// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package pointer // This file defines a naive Andersen-style solver for the inclusion // constraint system. import ( "fmt" "code.google.com/p/go.tools/go/types" ) func (a *analysis) solve() { // Solver main loop. for round := 1; ; round++ { if a.log != nil { fmt.Fprintf(a.log, "Solving, round %d\n", round) } // Add new constraints to the graph: // static constraints from SSA on round 1, // dynamic constraints from reflection thereafter. a.processNewConstraints() id := a.work.take() if id == empty { break } if a.log != nil { fmt.Fprintf(a.log, "\tnode n%d\n", id) } n := a.nodes[id] // Difference propagation. delta := n.pts.diff(n.prevPts) if delta == nil { continue } n.prevPts = n.pts.clone() // Apply all resolution rules attached to n. a.solveConstraints(n, delta) if a.log != nil { fmt.Fprintf(a.log, "\t\tpts(n%d) = %s\n", id, n.pts) } } if a.log != nil { fmt.Fprintf(a.log, "Solver done\n") } } // processNewConstraints takes the new constraints from a.constraints // and adds them to the graph, ensuring // that new constraints are applied to pre-existing labels and // that pre-existing constraints are applied to new labels. // func (a *analysis) processNewConstraints() { // Take the slice of new constraints. // (May grow during call to solveConstraints.) constraints := a.constraints a.constraints = nil // Initialize points-to sets from addr-of (base) constraints. for _, c := range constraints { if c, ok := c.(*addrConstraint); ok { dst := a.nodes[c.dst] dst.pts.add(c.src) // Populate the worklist with nodes that point to // something initially (due to addrConstraints) and // have other constraints attached. // (A no-op in round 1.) if dst.copyTo != nil || dst.complex != nil { a.addWork(c.dst) } } } // Attach simple (copy) and complex constraints to nodes. var stale nodeset for _, c := range constraints { var id nodeid switch c := c.(type) { case *addrConstraint: // base constraints handled in previous loop continue case *copyConstraint: // simple (copy) constraint id = c.src a.nodes[id].copyTo.add(c.dst) default: // complex constraint id = c.ptr() a.nodes[id].complex.add(c) } if n := a.nodes[id]; len(n.pts) > 0 { if len(n.prevPts) > 0 { stale.add(id) } a.addWork(id) } } // Apply new constraints to pre-existing PTS labels. for id := range stale { n := a.nodes[id] a.solveConstraints(n, n.prevPts) } } // solveConstraints applies each resolution rule attached to node n to // the set of labels delta. It may generate new constraints in // a.constraints. // func (a *analysis) solveConstraints(n *node, delta nodeset) { if delta == nil { return } // Process complex constraints dependent on n. for c := range n.complex { if a.log != nil { fmt.Fprintf(a.log, "\t\tconstraint %s\n", c) } // TODO(adonovan): parameter n is never used. Remove? c.solve(a, n, delta) } // Process copy constraints. var copySeen nodeset for mid := range n.copyTo { if copySeen.add(mid) { if a.nodes[mid].pts.addAll(delta) { a.addWork(mid) } } } } // addLabel adds label to the points-to set of ptr and reports whether the set grew. func (a *analysis) addLabel(ptr, label nodeid) bool { return a.nodes[ptr].pts.add(label) } func (a *analysis) addWork(id nodeid) { a.work.add(id) if a.log != nil { fmt.Fprintf(a.log, "\t\twork: n%d\n", id) } } func (c *addrConstraint) ptr() nodeid { panic("addrConstraint: not a complex constraint") } func (c *copyConstraint) ptr() nodeid { panic("addrConstraint: not a complex constraint") } // Complex constraints attach themselves to the relevant pointer node. func (c *storeConstraint) ptr() nodeid { return c.dst } func (c *loadConstraint) ptr() nodeid { return c.src } func (c *offsetAddrConstraint) ptr() nodeid { return c.src } func (c *typeAssertConstraint) ptr() nodeid { return c.src } func (c *invokeConstraint) ptr() nodeid { return c.iface } // onlineCopy adds a copy edge. It is called online, i.e. during // solving, so it adds edges and pts members directly rather than by // instantiating a 'constraint'. // // The size of the copy is implicitly 1. // It returns true if pts(dst) changed. // func (a *analysis) onlineCopy(dst, src nodeid) bool { if dst != src { if nsrc := a.nodes[src]; nsrc.copyTo.add(dst) { if a.log != nil { fmt.Fprintf(a.log, "\t\t\tdynamic copy n%d <- n%d\n", dst, src) } return a.nodes[dst].pts.addAll(nsrc.pts) } } return false } // Returns sizeof. // Implicitly adds nodes to worklist. // // TODO(adonovan): now that we support a.copy() during solving, we // could eliminate onlineCopyN, but it's much slower. Investigate. // func (a *analysis) onlineCopyN(dst, src nodeid, sizeof uint32) uint32 { for i := uint32(0); i < sizeof; i++ { if a.onlineCopy(dst, src) { a.addWork(dst) } src++ dst++ } return sizeof } func (c *loadConstraint) solve(a *analysis, n *node, delta nodeset) { var changed bool for k := range delta { koff := k + nodeid(c.offset) if a.onlineCopy(c.dst, koff) { changed = true } } if changed { a.addWork(c.dst) } } func (c *storeConstraint) solve(a *analysis, n *node, delta nodeset) { for k := range delta { koff := k + nodeid(c.offset) if a.onlineCopy(koff, c.src) { a.addWork(koff) } } } func (c *offsetAddrConstraint) solve(a *analysis, n *node, delta nodeset) { dst := a.nodes[c.dst] for k := range delta { if dst.pts.add(k + nodeid(c.offset)) { a.addWork(c.dst) } } } func (c *typeAssertConstraint) solve(a *analysis, n *node, delta nodeset) { tIface, _ := c.typ.Underlying().(*types.Interface) for ifaceObj := range delta { tDyn, v, indirect := a.taggedValue(ifaceObj) if tDyn == nil { panic("not a tagged value") } if indirect { // TODO(adonovan): we'll need to implement this // when we start creating indirect tagged objects. panic("indirect tagged object") } if tIface != nil { if types.IsAssignableTo(tDyn, tIface) { if a.addLabel(c.dst, ifaceObj) { a.addWork(c.dst) } } } else { if types.IsIdentical(tDyn, c.typ) { // Copy entire payload to dst. // // TODO(adonovan): opt: if tConc is // nonpointerlike we can skip this // entire constraint, perhaps. We // only care about pointers among the // fields. a.onlineCopyN(c.dst, v, a.sizeof(tDyn)) } } } } func (c *invokeConstraint) solve(a *analysis, n *node, delta nodeset) { for ifaceObj := range delta { tDyn, v, indirect := a.taggedValue(ifaceObj) if tDyn == nil { panic("not a tagged value") } if indirect { // TODO(adonovan): we may need to implement this if // we ever apply invokeConstraints to reflect.Value PTSs, // e.g. for (reflect.Value).Call. panic("indirect tagged object") } // Look up the concrete method. meth := tDyn.MethodSet().Lookup(c.method.Pkg(), c.method.Name()) if meth == nil { panic(fmt.Sprintf("n%d: type %s has no method %s (iface=n%d)", c.iface, tDyn, c.method, ifaceObj)) } fn := a.prog.Method(meth) if fn == nil { panic(fmt.Sprintf("n%d: no ssa.Function for %s", c.iface, meth)) } sig := fn.Signature fnObj := a.funcObj[fn] // dynamic calls use shared contour if fnObj == 0 { // a.valueNode(fn) was not called during gen phase. panic(fmt.Sprintf("a.funcObj(%s)==nil", fn)) } // Make callsite's fn variable point to identity of // concrete method. (There's no need to add it to // worklist since it never has attached constraints.) a.addLabel(c.params, fnObj) // Extract value and connect to method's receiver. // Copy payload to method's receiver param (arg0). arg0 := a.funcParams(fnObj) recvSize := a.sizeof(sig.Recv().Type()) a.onlineCopyN(arg0, v, recvSize) src := c.params + 1 // skip past identity dst := arg0 + nodeid(recvSize) // Copy caller's argument block to method formal parameters. paramsSize := a.sizeof(sig.Params()) a.onlineCopyN(dst, src, paramsSize) src += nodeid(paramsSize) dst += nodeid(paramsSize) // Copy method results to caller's result block. resultsSize := a.sizeof(sig.Results()) a.onlineCopyN(src, dst, resultsSize) } } func (c *addrConstraint) solve(a *analysis, n *node, delta nodeset) { panic("addr is not a complex constraint") } func (c *copyConstraint) solve(a *analysis, n *node, delta nodeset) { panic("copy is not a complex constraint") }