// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains the Go wrapper for the constant-time, 64-bit assembly // implementation of P256. The optimizations performed here are described in // detail in: // S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with // 256-bit primes" // http://link.springer.com/article/10.1007%2Fs13389-014-0090-x // https://eprint.iacr.org/2013/816.pdf // +build amd64 package elliptic import ( "math/big" "sync" ) type ( p256Curve struct { *CurveParams } p256Point struct { xyz [12]uint64 } ) var ( p256 p256Curve p256Precomputed *[37][64 * 8]uint64 precomputeOnce sync.Once ) func initP256() { // See FIPS 186-3, section D.2.3 p256.CurveParams = &CurveParams{Name: "P-256"} p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10) p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) p256.BitSize = 256 } func (curve p256Curve) Params() *CurveParams { return curve.CurveParams } // Functions implemented in p256_asm_amd64.s // Montgomery multiplication modulo P256 func p256Mul(res, in1, in2 []uint64) // Montgomery square modulo P256 func p256Sqr(res, in []uint64) // Montgomery multiplication by 1 func p256FromMont(res, in []uint64) // iff cond == 1 val <- -val func p256NegCond(val []uint64, cond int) // if cond == 0 res <- b; else res <- a func p256MovCond(res, a, b []uint64, cond int) // Endianness swap func p256BigToLittle(res []uint64, in []byte) func p256LittleToBig(res []byte, in []uint64) // Constant time table access func p256Select(point, table []uint64, idx int) func p256SelectBase(point, table []uint64, idx int) // Montgomery multiplication modulo Ord(G) func p256OrdMul(res, in1, in2 []uint64) // Montgomery square modulo Ord(G), repeated n times func p256OrdSqr(res, in []uint64, n int) // Point add with in2 being affine point // If sign == 1 -> in2 = -in2 // If sel == 0 -> res = in1 // if zero == 0 -> res = in2 func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) // Point add func p256PointAddAsm(res, in1, in2 []uint64) // Point double func p256PointDoubleAsm(res, in []uint64) func (curve p256Curve) Inverse(k *big.Int) *big.Int { if k.Cmp(p256.N) >= 0 { // This should never happen. reducedK := new(big.Int).Mod(k, p256.N) k = reducedK } // table will store precomputed powers of x. The four words at index // 4×i store x^(i+1). var table [4 * 15]uint64 x := make([]uint64, 4) fromBig(x[:], k) // This code operates in the Montgomery domain where R = 2^256 mod n // and n is the order of the scalar field. (See initP256 for the // value.) Elements in the Montgomery domain take the form a×R and // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, // i.e. converts x into the Montgomery domain. RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620} p256OrdMul(table[:4], x, RR) // Prepare the table, no need in constant time access, because the // power is not a secret. (Entry 0 is never used.) for i := 2; i < 16; i += 2 { p256OrdSqr(table[4*(i-1):], table[4*((i/2)-1):], 1) p256OrdMul(table[4*i:], table[4*(i-1):], table[:4]) } x[0] = table[4*14+0] // f x[1] = table[4*14+1] x[2] = table[4*14+2] x[3] = table[4*14+3] p256OrdSqr(x, x, 4) p256OrdMul(x, x, table[4*14:4*14+4]) // ff t := make([]uint64, 4, 4) t[0] = x[0] t[1] = x[1] t[2] = x[2] t[3] = x[3] p256OrdSqr(x, x, 8) p256OrdMul(x, x, t) // ffff t[0] = x[0] t[1] = x[1] t[2] = x[2] t[3] = x[3] p256OrdSqr(x, x, 16) p256OrdMul(x, x, t) // ffffffff t[0] = x[0] t[1] = x[1] t[2] = x[2] t[3] = x[3] p256OrdSqr(x, x, 64) // ffffffff0000000000000000 p256OrdMul(x, x, t) // ffffffff00000000ffffffff p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000 p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff // Remaining 32 windows expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4, 0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf} for i := 0; i < 32; i++ { p256OrdSqr(x, x, 4) p256OrdMul(x, x, table[4*(expLo[i]-1):]) } // Multiplying by one in the Montgomery domain converts a Montgomery // value out of the domain. one := []uint64{1, 0, 0, 0} p256OrdMul(x, x, one) xOut := make([]byte, 32) p256LittleToBig(xOut, x) return new(big.Int).SetBytes(xOut) } // fromBig converts a *big.Int into a format used by this code. func fromBig(out []uint64, big *big.Int) { for i := range out { out[i] = 0 } for i, v := range big.Bits() { out[i] = uint64(v) } } // p256GetScalar endian-swaps the big-endian scalar value from in and writes it // to out. If the scalar is equal or greater than the order of the group, it's // reduced modulo that order. func p256GetScalar(out []uint64, in []byte) { n := new(big.Int).SetBytes(in) if n.Cmp(p256.N) >= 0 { n.Mod(n, p256.N) } fromBig(out, n) } // p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the // underlying field of the curve. (See initP256 for the value.) Thus rr here is // R×R mod p. See comment in Inverse about how this is used. var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd} func maybeReduceModP(in *big.Int) *big.Int { if in.Cmp(p256.P) < 0 { return in } return new(big.Int).Mod(in, p256.P) } func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) var r1, r2 p256Point p256GetScalar(scalarReversed, baseScalar) r1.p256BaseMult(scalarReversed) p256GetScalar(scalarReversed, scalar) fromBig(r2.xyz[0:4], maybeReduceModP(bigX)) fromBig(r2.xyz[4:8], maybeReduceModP(bigY)) p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:]) p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:]) // This sets r2's Z value to 1, in the Montgomery domain. r2.xyz[8] = 0x0000000000000001 r2.xyz[9] = 0xffffffff00000000 r2.xyz[10] = 0xffffffffffffffff r2.xyz[11] = 0x00000000fffffffe r2.p256ScalarMult(scalarReversed) p256PointAddAsm(r1.xyz[:], r1.xyz[:], r2.xyz[:]) return r1.p256PointToAffine() } func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) p256GetScalar(scalarReversed, scalar) var r p256Point r.p256BaseMult(scalarReversed) return r.p256PointToAffine() } func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) p256GetScalar(scalarReversed, scalar) var r p256Point fromBig(r.xyz[0:4], maybeReduceModP(bigX)) fromBig(r.xyz[4:8], maybeReduceModP(bigY)) p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:]) p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:]) // This sets r2's Z value to 1, in the Montgomery domain. r.xyz[8] = 0x0000000000000001 r.xyz[9] = 0xffffffff00000000 r.xyz[10] = 0xffffffffffffffff r.xyz[11] = 0x00000000fffffffe r.p256ScalarMult(scalarReversed) return r.p256PointToAffine() } func (p *p256Point) p256PointToAffine() (x, y *big.Int) { zInv := make([]uint64, 4) zInvSq := make([]uint64, 4) p256Inverse(zInv, p.xyz[8:12]) p256Sqr(zInvSq, zInv) p256Mul(zInv, zInv, zInvSq) p256Mul(zInvSq, p.xyz[0:4], zInvSq) p256Mul(zInv, p.xyz[4:8], zInv) p256FromMont(zInvSq, zInvSq) p256FromMont(zInv, zInv) xOut := make([]byte, 32) yOut := make([]byte, 32) p256LittleToBig(xOut, zInvSq) p256LittleToBig(yOut, zInv) return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut) } // p256Inverse sets out to in^-1 mod p. func p256Inverse(out, in []uint64) { var stack [6 * 4]uint64 p2 := stack[4*0 : 4*0+4] p4 := stack[4*1 : 4*1+4] p8 := stack[4*2 : 4*2+4] p16 := stack[4*3 : 4*3+4] p32 := stack[4*4 : 4*4+4] p256Sqr(out, in) p256Mul(p2, out, in) // 3*p p256Sqr(out, p2) p256Sqr(out, out) p256Mul(p4, out, p2) // f*p p256Sqr(out, p4) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256Mul(p8, out, p4) // ff*p p256Sqr(out, p8) for i := 0; i < 7; i++ { p256Sqr(out, out) } p256Mul(p16, out, p8) // ffff*p p256Sqr(out, p16) for i := 0; i < 15; i++ { p256Sqr(out, out) } p256Mul(p32, out, p16) // ffffffff*p p256Sqr(out, p32) for i := 0; i < 31; i++ { p256Sqr(out, out) } p256Mul(out, out, in) for i := 0; i < 32*4; i++ { p256Sqr(out, out) } p256Mul(out, out, p32) for i := 0; i < 32; i++ { p256Sqr(out, out) } p256Mul(out, out, p32) for i := 0; i < 16; i++ { p256Sqr(out, out) } p256Mul(out, out, p16) for i := 0; i < 8; i++ { p256Sqr(out, out) } p256Mul(out, out, p8) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256Sqr(out, out) p256Mul(out, out, p4) p256Sqr(out, out) p256Sqr(out, out) p256Mul(out, out, p2) p256Sqr(out, out) p256Sqr(out, out) p256Mul(out, out, in) } func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) { copy(r[index*12:], p.xyz[:]) } func boothW5(in uint) (int, int) { var s uint = ^((in >> 5) - 1) var d uint = (1 << 6) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func boothW7(in uint) (int, int) { var s uint = ^((in >> 7) - 1) var d uint = (1 << 8) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func initTable() { p256Precomputed = new([37][64 * 8]uint64) basePoint := []uint64{ 0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6, 0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85, 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, } t1 := make([]uint64, 12) t2 := make([]uint64, 12) copy(t2, basePoint) zInv := make([]uint64, 4) zInvSq := make([]uint64, 4) for j := 0; j < 64; j++ { copy(t1, t2) for i := 0; i < 37; i++ { // The window size is 7 so we need to double 7 times. if i != 0 { for k := 0; k < 7; k++ { p256PointDoubleAsm(t1, t1) } } // Convert the point to affine form. (Its values are // still in Montgomery form however.) p256Inverse(zInv, t1[8:12]) p256Sqr(zInvSq, zInv) p256Mul(zInv, zInv, zInvSq) p256Mul(t1[:4], t1[:4], zInvSq) p256Mul(t1[4:8], t1[4:8], zInv) copy(t1[8:12], basePoint[8:12]) // Update the table entry copy(p256Precomputed[i][j*8:], t1[:8]) } if j == 0 { p256PointDoubleAsm(t2, basePoint) } else { p256PointAddAsm(t2, t2, basePoint) } } } func (p *p256Point) p256BaseMult(scalar []uint64) { precomputeOnce.Do(initTable) wvalue := (scalar[0] << 1) & 0xff sel, sign := boothW7(uint(wvalue)) p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel) p256NegCond(p.xyz[4:8], sign) // (This is one, in the Montgomery domain.) p.xyz[8] = 0x0000000000000001 p.xyz[9] = 0xffffffff00000000 p.xyz[10] = 0xffffffffffffffff p.xyz[11] = 0x00000000fffffffe var t0 p256Point // (This is one, in the Montgomery domain.) t0.xyz[8] = 0x0000000000000001 t0.xyz[9] = 0xffffffff00000000 t0.xyz[10] = 0xffffffffffffffff t0.xyz[11] = 0x00000000fffffffe index := uint(6) zero := sel for i := 1; i < 37; i++ { if index < 192 { wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0xff } else { wvalue = (scalar[index/64] >> (index % 64)) & 0xff } index += 7 sel, sign = boothW7(uint(wvalue)) p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel) p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero) zero |= sel } } func (p *p256Point) p256ScalarMult(scalar []uint64) { // precomp is a table of precomputed points that stores powers of p // from p^1 to p^16. var precomp [16 * 4 * 3]uint64 var t0, t1, t2, t3 p256Point // Prepare the table p.p256StorePoint(&precomp, 0) // 1 p256PointDoubleAsm(t0.xyz[:], p.xyz[:]) p256PointDoubleAsm(t1.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t2.xyz[:], t1.xyz[:]) p256PointDoubleAsm(t3.xyz[:], t2.xyz[:]) t0.p256StorePoint(&precomp, 1) // 2 t1.p256StorePoint(&precomp, 3) // 4 t2.p256StorePoint(&precomp, 7) // 8 t3.p256StorePoint(&precomp, 15) // 16 p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) t0.p256StorePoint(&precomp, 2) // 3 t1.p256StorePoint(&precomp, 4) // 5 t2.p256StorePoint(&precomp, 8) // 9 p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t1.xyz[:], t1.xyz[:]) t0.p256StorePoint(&precomp, 5) // 6 t1.p256StorePoint(&precomp, 9) // 10 p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) t2.p256StorePoint(&precomp, 6) // 7 t1.p256StorePoint(&precomp, 10) // 11 p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t2.xyz[:], t2.xyz[:]) t0.p256StorePoint(&precomp, 11) // 12 t2.p256StorePoint(&precomp, 13) // 14 p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) t0.p256StorePoint(&precomp, 12) // 13 t2.p256StorePoint(&precomp, 14) // 15 // Start scanning the window from top bit index := uint(254) var sel, sign int wvalue := (scalar[index/64] >> (index % 64)) & 0x3f sel, _ = boothW5(uint(wvalue)) p256Select(p.xyz[0:12], precomp[0:], sel) zero := sel for index > 4 { index -= 5 p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) if index < 192 { wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f } else { wvalue = (scalar[index/64] >> (index % 64)) & 0x3f } sel, sign = boothW5(uint(wvalue)) p256Select(t0.xyz[0:], precomp[0:], sel) p256NegCond(t0.xyz[4:8], sign) p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) zero |= sel } p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) wvalue = (scalar[0] << 1) & 0x3f sel, sign = boothW5(uint(wvalue)) p256Select(t0.xyz[0:], precomp[0:], sel) p256NegCond(t0.xyz[4:8], sign) p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) }