// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" // _rt0_amd64 is common startup code for most amd64 systems when using // internal linking. This is the entry point for the program from the // kernel for an ordinary -buildmode=exe program. The stack holds the // number of arguments and the C-style argv. TEXT _rt0_amd64(SB),NOSPLIT,$-8 MOVQ 0(SP), DI // argc LEAQ 8(SP), SI // argv JMP runtime·rt0_go(SB) // main is common startup code for most amd64 systems when using // external linking. The C startup code will call the symbol "main" // passing argc and argv in the usual C ABI registers DI and SI. TEXT main(SB),NOSPLIT,$-8 JMP runtime·rt0_go(SB) // _rt0_amd64_lib is common startup code for most amd64 systems when // using -buildmode=c-archive or -buildmode=c-shared. The linker will // arrange to invoke this function as a global constructor (for // c-archive) or when the shared library is loaded (for c-shared). // We expect argc and argv to be passed in the usual C ABI registers // DI and SI. TEXT _rt0_amd64_lib(SB),NOSPLIT,$0x50 // Align stack per ELF ABI requirements. MOVQ SP, AX ANDQ $~15, SP // Save C ABI callee-saved registers, as caller may need them. MOVQ BX, 0x10(SP) MOVQ BP, 0x18(SP) MOVQ R12, 0x20(SP) MOVQ R13, 0x28(SP) MOVQ R14, 0x30(SP) MOVQ R15, 0x38(SP) MOVQ AX, 0x40(SP) MOVQ DI, _rt0_amd64_lib_argc<>(SB) MOVQ SI, _rt0_amd64_lib_argv<>(SB) // Synchronous initialization. CALL runtime·libpreinit(SB) // Create a new thread to finish Go runtime initialization. MOVQ _cgo_sys_thread_create(SB), AX TESTQ AX, AX JZ nocgo MOVQ $_rt0_amd64_lib_go(SB), DI MOVQ $0, SI CALL AX JMP restore nocgo: MOVQ $0x800000, 0(SP) // stacksize MOVQ $_rt0_amd64_lib_go(SB), AX MOVQ AX, 8(SP) // fn CALL runtime·newosproc0(SB) restore: MOVQ 0x10(SP), BX MOVQ 0x18(SP), BP MOVQ 0x20(SP), R12 MOVQ 0x28(SP), R13 MOVQ 0x30(SP), R14 MOVQ 0x38(SP), R15 MOVQ 0x40(SP), SP RET // _rt0_amd64_lib_go initializes the Go runtime. // This is started in a separate thread by _rt0_amd64_lib. TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 MOVQ _rt0_amd64_lib_argc<>(SB), DI MOVQ _rt0_amd64_lib_argv<>(SB), SI JMP runtime·rt0_go(SB) DATA _rt0_amd64_lib_argc<>(SB)/8, $0 GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 DATA _rt0_amd64_lib_argv<>(SB)/8, $0 GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 TEXT runtime·rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVQ DI, AX // argc MOVQ SI, BX // argv SUBQ $(4*8+7), SP // 2args 2auto ANDQ $~15, SP MOVQ AX, 16(SP) MOVQ BX, 24(SP) // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVQ $runtime·g0(SB), DI LEAQ (-64*1024+104)(SP), BX MOVQ BX, g_stackguard0(DI) MOVQ BX, g_stackguard1(DI) MOVQ BX, (g_stack+stack_lo)(DI) MOVQ SP, (g_stack+stack_hi)(DI) // find out information about the processor we're on MOVL $0, AX CPUID MOVL AX, SI CMPL AX, $0 JE nocpuinfo // Figure out how to serialize RDTSC. // On Intel processors LFENCE is enough. AMD requires MFENCE. // Don't know about the rest, so let's do MFENCE. CMPL BX, $0x756E6547 // "Genu" JNE notintel CMPL DX, $0x49656E69 // "ineI" JNE notintel CMPL CX, $0x6C65746E // "ntel" JNE notintel MOVB $1, runtime·isIntel(SB) MOVB $1, runtime·lfenceBeforeRdtsc(SB) notintel: // Load EAX=1 cpuid flags MOVL $1, AX CPUID MOVL AX, runtime·processorVersionInfo(SB) TESTL $(1<<26), DX // SSE2 SETNE runtime·support_sse2(SB) TESTL $(1<<9), CX // SSSE3 SETNE runtime·support_ssse3(SB) TESTL $(1<<19), CX // SSE4.1 SETNE runtime·support_sse41(SB) TESTL $(1<<20), CX // SSE4.2 SETNE runtime·support_sse42(SB) TESTL $(1<<23), CX // POPCNT SETNE runtime·support_popcnt(SB) TESTL $(1<<25), CX // AES SETNE runtime·support_aes(SB) TESTL $(1<<27), CX // OSXSAVE SETNE runtime·support_osxsave(SB) // If OS support for XMM and YMM is not present // support_avx will be set back to false later. TESTL $(1<<28), CX // AVX SETNE runtime·support_avx(SB) eax7: // Load EAX=7/ECX=0 cpuid flags CMPL SI, $7 JLT osavx MOVL $7, AX MOVL $0, CX CPUID TESTL $(1<<3), BX // BMI1 SETNE runtime·support_bmi1(SB) // If OS support for XMM and YMM is not present // support_avx2 will be set back to false later. TESTL $(1<<5), BX SETNE runtime·support_avx2(SB) TESTL $(1<<8), BX // BMI2 SETNE runtime·support_bmi2(SB) TESTL $(1<<9), BX // ERMS SETNE runtime·support_erms(SB) osavx: CMPB runtime·support_osxsave(SB), $1 JNE noavx MOVL $0, CX // For XGETBV, OSXSAVE bit is required and sufficient XGETBV ANDL $6, AX CMPL AX, $6 // Check for OS support of XMM and YMM registers. JE nocpuinfo noavx: MOVB $0, runtime·support_avx(SB) MOVB $0, runtime·support_avx2(SB) nocpuinfo: // if there is an _cgo_init, call it. MOVQ _cgo_init(SB), AX TESTQ AX, AX JZ needtls // g0 already in DI MOVQ DI, CX // Win64 uses CX for first parameter MOVQ $setg_gcc<>(SB), SI CALL AX // update stackguard after _cgo_init MOVQ $runtime·g0(SB), CX MOVQ (g_stack+stack_lo)(CX), AX ADDQ $const__StackGuard, AX MOVQ AX, g_stackguard0(CX) MOVQ AX, g_stackguard1(CX) #ifndef GOOS_windows JMP ok #endif needtls: #ifdef GOOS_plan9 // skip TLS setup on Plan 9 JMP ok #endif #ifdef GOOS_solaris // skip TLS setup on Solaris JMP ok #endif LEAQ runtime·m0+m_tls(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·m0+m_tls(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAQ runtime·g0(SB), CX MOVQ CX, g(BX) LEAQ runtime·m0(SB), AX // save m->g0 = g0 MOVQ CX, m_g0(AX) // save m0 to g0->m MOVQ AX, g_m(CX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVQ 24(SP), AX // copy argv MOVQ AX, 8(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOVQ $runtime·mainPC(SB), AX // entry PUSHQ AX PUSHQ $0 // arg size CALL runtime·newproc(SB) POPQ AX POPQ AX // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 BYTE $0xcc RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-8 MOVQ buf+0(FP), AX // gobuf LEAQ buf+0(FP), BX // caller's SP MOVQ BX, gobuf_sp(AX) MOVQ 0(SP), BX // caller's PC MOVQ BX, gobuf_pc(AX) MOVQ $0, gobuf_ret(AX) MOVQ BP, gobuf_bp(AX) // Assert ctxt is zero. See func save. MOVQ gobuf_ctxt(AX), BX TESTQ BX, BX JZ 2(PC) CALL runtime·badctxt(SB) get_tls(CX) MOVQ g(CX), BX MOVQ BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $16-8 MOVQ buf+0(FP), BX // gobuf MOVQ gobuf_g(BX), DX MOVQ 0(DX), CX // make sure g != nil get_tls(CX) MOVQ DX, g(CX) MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_ret(BX), AX MOVQ gobuf_ctxt(BX), DX MOVQ gobuf_bp(BX), BP MOVQ $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVQ $0, gobuf_ctxt(BX) MOVQ $0, gobuf_bp(BX) MOVQ gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI get_tls(CX) MOVQ g(CX), AX // save state in g->sched MOVQ 0(SP), BX // caller's PC MOVQ BX, (g_sched+gobuf_pc)(AX) LEAQ fn+0(FP), BX // caller's SP MOVQ BX, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) MOVQ BP, (g_sched+gobuf_bp)(AX) // switch to m->g0 & its stack, call fn MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI CMPQ SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVQ $runtime·badmcall(SB), AX JMP AX MOVQ SI, g(CX) // g = m->g0 MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHQ AX MOVQ DI, DX MOVQ 0(DI), DI CALL DI POPQ AX MOVQ $runtime·badmcall2(SB), AX JMP AX RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI // DI = fn get_tls(CX) MOVQ g(CX), AX // AX = g MOVQ g_m(AX), BX // BX = m MOVQ m_gsignal(BX), DX // DX = gsignal CMPQ AX, DX JEQ noswitch MOVQ m_g0(BX), DX // DX = g0 CMPQ AX, DX JEQ noswitch MOVQ m_curg(BX), R8 CMPQ AX, R8 JEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? MOVQ $runtime·badsystemstack(SB), AX CALL AX switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVQ $runtime·systemstack_switch(SB), SI MOVQ SI, (g_sched+gobuf_pc)(AX) MOVQ SP, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) MOVQ BP, (g_sched+gobuf_bp)(AX) // switch to g0 MOVQ DX, g(CX) MOVQ (g_sched+gobuf_sp)(DX), BX // make it look like mstart called systemstack on g0, to stop traceback SUBQ $8, BX MOVQ $runtime·mstart(SB), DX MOVQ DX, 0(BX) MOVQ BX, SP // call target function MOVQ DI, DX MOVQ 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), BX MOVQ m_curg(BX), AX MOVQ AX, g(CX) MOVQ (g_sched+gobuf_sp)(AX), SP MOVQ $0, (g_sched+gobuf_sp)(AX) RET noswitch: // already on m stack; tail call the function // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVQ DI, DX MOVQ 0(DI), DI JMP DI /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI CMPQ g(CX), SI JNE 3(PC) CALL runtime·badmorestackg0(SB) INT $3 // Cannot grow signal stack (m->gsignal). MOVQ m_gsignal(BX), SI CMPQ g(CX), SI JNE 3(PC) CALL runtime·badmorestackgsignal(SB) INT $3 // Called from f. // Set m->morebuf to f's caller. MOVQ 8(SP), AX // f's caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 16(SP), AX // f's caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVQ g(CX), SI MOVQ SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVQ 0(SP), AX // f's PC MOVQ AX, (g_sched+gobuf_pc)(SI) MOVQ SI, (g_sched+gobuf_g)(SI) LEAQ 8(SP), AX // f's SP MOVQ AX, (g_sched+gobuf_sp)(SI) MOVQ BP, (g_sched+gobuf_bp)(SI) MOVQ DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVQ m_g0(BX), BX MOVQ BX, g(CX) MOVQ (g_sched+gobuf_sp)(BX), SP CALL runtime·newstack(SB) MOVQ $0, 0x1003 // crash if newstack returns RET // morestack but not preserving ctxt. TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPQ CX, $MAXSIZE; \ JA 3(PC); \ MOVQ $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $0-32 MOVLQZX argsize+24(FP), CX DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVQ $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVQ argptr+16(FP), SI; \ MOVLQZX argsize+24(FP), CX; \ MOVQ SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVQ f+8(FP), DX; \ PCDATA $PCDATA_StackMapIndex, $0; \ CALL (DX); \ /* copy return values back */ \ MOVQ argtype+0(FP), DX; \ MOVQ argptr+16(FP), DI; \ MOVLQZX argsize+24(FP), CX; \ MOVLQZX retoffset+28(FP), BX; \ MOVQ SP, SI; \ ADDQ BX, DI; \ ADDQ BX, SI; \ SUBQ BX, CX; \ CALL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $32-0 NO_LOCAL_POINTERS MOVQ DX, 0(SP) MOVQ DI, 8(SP) MOVQ SI, 16(SP) MOVQ CX, 24(SP) CALL runtime·reflectcallmove(SB) RET CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 // Stores are already ordered on x86, so this is just a // compile barrier. RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 MOVQ fv+0(FP), DX // fn MOVQ argp+8(FP), BX // caller sp LEAQ -8(BX), SP // caller sp after CALL MOVQ -8(SP), BP // restore BP as if deferreturn returned (harmless if framepointers not in use) SUBQ $5, (SP) // return to CALL again MOVQ 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. Smashes R8, R9. TEXT gosave<>(SB),NOSPLIT,$0 get_tls(R8) MOVQ g(R8), R8 MOVQ 0(SP), R9 MOVQ R9, (g_sched+gobuf_pc)(R8) LEAQ 8(SP), R9 MOVQ R9, (g_sched+gobuf_sp)(R8) MOVQ $0, (g_sched+gobuf_ret)(R8) MOVQ BP, (g_sched+gobuf_bp)(R8) // Assert ctxt is zero. See func save. MOVQ (g_sched+gobuf_ctxt)(R8), R9 TESTQ R9, R9 JZ 2(PC) CALL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVQ g(CX), R8 CMPQ R8, $0 JEQ nosave MOVQ g_m(R8), R8 MOVQ m_g0(R8), SI MOVQ g(CX), DI CMPQ SI, DI JEQ nosave MOVQ m_gsignal(R8), SI CMPQ SI, DI JEQ nosave // Switch to system stack. MOVQ m_g0(R8), SI CALL gosave<>(SB) MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). // Make sure we have enough room for 4 stack-backed fast-call // registers as per windows amd64 calling convention. SUBQ $64, SP ANDQ $~15, SP // alignment for gcc ABI MOVQ DI, 48(SP) // save g MOVQ (g_stack+stack_hi)(DI), DI SUBQ DX, DI MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVQ 48(SP), DI MOVQ (g_stack+stack_hi)(DI), SI SUBQ 40(SP), SI MOVQ DI, g(CX) MOVQ SI, SP MOVL AX, ret+16(FP) RET nosave: // Running on a system stack, perhaps even without a g. // Having no g can happen during thread creation or thread teardown // (see needm/dropm on Solaris, for example). // This code is like the above sequence but without saving/restoring g // and without worrying about the stack moving out from under us // (because we're on a system stack, not a goroutine stack). // The above code could be used directly if already on a system stack, // but then the only path through this code would be a rare case on Solaris. // Using this code for all "already on system stack" calls exercises it more, // which should help keep it correct. SUBQ $64, SP ANDQ $~15, SP MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging MOVQ DX, 40(SP) // save original stack pointer MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX MOVQ 40(SP), SI // restore original stack pointer MOVQ SI, SP MOVL AX, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 LEAQ fn+0(FP), AX MOVQ AX, 0(SP) MOVQ frame+8(FP), AX MOVQ AX, 8(SP) MOVQ framesize+16(FP), AX MOVQ AX, 16(SP) MOVQ ctxt+24(FP), AX MOVQ AX, 24(SP) MOVQ $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 NO_LOCAL_POINTERS // If g is nil, Go did not create the current thread. // Call needm to obtain one m for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BX CMPQ CX, $0 JEQ 2(PC) #endif MOVQ g(CX), BX CMPQ BX, $0 JEQ needm MOVQ g_m(BX), BX MOVQ BX, R8 // holds oldm until end of function JMP havem needm: MOVQ $0, 0(SP) MOVQ $runtime·needm(SB), AX CALL AX MOVQ 0(SP), R8 get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVQ m_g0(BX), SI MOVQ SP, (g_sched+gobuf_sp)(SI) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVQ m_g0(BX), SI MOVQ (g_sched+gobuf_sp)(SI), AX MOVQ AX, 0(SP) MOVQ SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 8(SP) holds the saved R8. MOVQ m_curg(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVQ (g_sched+gobuf_pc)(SI), BX MOVQ BX, -8(DI) // Compute the size of the frame, including return PC and, if // GOEXPERIMENT=framepointer, the saved base pointer MOVQ ctxt+24(FP), BX LEAQ fv+0(FP), AX SUBQ SP, AX SUBQ AX, DI MOVQ DI, SP MOVQ R8, 8(SP) MOVQ BX, 0(SP) CALL runtime·cgocallbackg(SB) MOVQ 8(SP), R8 // Compute the size of the frame again. FP and SP have // completely different values here than they did above, // but only their difference matters. LEAQ fv+0(FP), AX SUBQ SP, AX // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVQ g(CX), SI MOVQ SP, DI ADDQ AX, DI MOVQ -8(DI), BX MOVQ BX, (g_sched+gobuf_pc)(SI) MOVQ DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP MOVQ 0(SP), AX MOVQ AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. CMPQ R8, $0 JNE 3(PC) MOVQ $runtime·dropm(SB), AX CALL AX // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVQ gg+0(FP), BX #ifdef GOOS_windows CMPQ BX, $0 JNE settls MOVQ $0, 0x28(GS) RET settls: MOVQ g_m(BX), AX LEAQ m_tls(AX), AX MOVQ AX, 0x28(GS) #endif get_tls(CX) MOVQ BX, g(CX) RET // void setg_gcc(G*); set g called from gcc. TEXT setg_gcc<>(SB),NOSPLIT,$0 get_tls(AX) MOVQ DI, g(AX) RET // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVQ g(CX), AX CMPQ (g_stack+stack_hi)(AX), SP JHI 2(PC) INT $3 CMPQ SP, (g_stack+stack_lo)(AX) JHI 2(PC) INT $3 RET // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-0 CMPB runtime·lfenceBeforeRdtsc(SB), $1 JNE mfence LFENCE JMP done mfence: MFENCE done: RDTSC SHLQ $32, DX ADDQ DX, AX MOVQ AX, ret+0(FP) RET // hash function using AES hardware instructions TEXT runtime·aeshash(SB),NOSPLIT,$0-32 MOVQ p+0(FP), AX // ptr to data MOVQ s+16(FP), CX // size LEAQ ret+24(FP), DX JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to string struct MOVQ 8(AX), CX // length of string MOVQ (AX), AX // string data LEAQ ret+16(FP), DX JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: address to put return value TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 // Fill an SSE register with our seeds. MOVQ h+8(FP), X0 // 64 bits of per-table hash seed PINSRW $4, CX, X0 // 16 bits of length PSHUFHW $0, X0, X0 // repeat length 4 times total MOVO X0, X1 // save unscrambled seed PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed AESENC X0, X0 // scramble seed CMPQ CX, $16 JB aes0to15 JE aes16 CMPQ CX, $32 JBE aes17to32 CMPQ CX, $64 JBE aes33to64 CMPQ CX, $128 JBE aes65to128 JMP aes129plus aes0to15: TESTQ CX, CX JE aes0 ADDQ $16, AX TESTW $0xff0, AX JE endofpage // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU -16(AX), X1 ADDQ CX, CX MOVQ $masks<>(SB), AX PAND (AX)(CX*8), X1 final1: PXOR X0, X1 // xor data with seed AESENC X1, X1 // scramble combo 3 times AESENC X1, X1 AESENC X1, X1 MOVQ X1, (DX) RET endofpage: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -32(AX)(CX*1), X1 ADDQ CX, CX MOVQ $shifts<>(SB), AX PSHUFB (AX)(CX*8), X1 JMP final1 aes0: // Return scrambled input seed AESENC X0, X0 MOVQ X0, (DX) RET aes16: MOVOU (AX), X1 JMP final1 aes17to32: // make second starting seed PXOR runtime·aeskeysched+16(SB), X1 AESENC X1, X1 // load data to be hashed MOVOU (AX), X2 MOVOU -16(AX)(CX*1), X3 // xor with seed PXOR X0, X2 PXOR X1, X3 // scramble 3 times AESENC X2, X2 AESENC X3, X3 AESENC X2, X2 AESENC X3, X3 AESENC X2, X2 AESENC X3, X3 // combine results PXOR X3, X2 MOVQ X2, (DX) RET aes33to64: // make 3 more starting seeds MOVO X1, X2 MOVO X1, X3 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 MOVOU (AX), X4 MOVOU 16(AX), X5 MOVOU -32(AX)(CX*1), X6 MOVOU -16(AX)(CX*1), X7 PXOR X0, X4 PXOR X1, X5 PXOR X2, X6 PXOR X3, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 PXOR X6, X4 PXOR X7, X5 PXOR X5, X4 MOVQ X4, (DX) RET aes65to128: // make 7 more starting seeds MOVO X1, X2 MOVO X1, X3 MOVO X1, X4 MOVO X1, X5 MOVO X1, X6 MOVO X1, X7 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 PXOR runtime·aeskeysched+64(SB), X4 PXOR runtime·aeskeysched+80(SB), X5 PXOR runtime·aeskeysched+96(SB), X6 PXOR runtime·aeskeysched+112(SB), X7 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 // load data MOVOU (AX), X8 MOVOU 16(AX), X9 MOVOU 32(AX), X10 MOVOU 48(AX), X11 MOVOU -64(AX)(CX*1), X12 MOVOU -48(AX)(CX*1), X13 MOVOU -32(AX)(CX*1), X14 MOVOU -16(AX)(CX*1), X15 // xor with seed PXOR X0, X8 PXOR X1, X9 PXOR X2, X10 PXOR X3, X11 PXOR X4, X12 PXOR X5, X13 PXOR X6, X14 PXOR X7, X15 // scramble 3 times AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 // combine results PXOR X12, X8 PXOR X13, X9 PXOR X14, X10 PXOR X15, X11 PXOR X10, X8 PXOR X11, X9 PXOR X9, X8 MOVQ X8, (DX) RET aes129plus: // make 7 more starting seeds MOVO X1, X2 MOVO X1, X3 MOVO X1, X4 MOVO X1, X5 MOVO X1, X6 MOVO X1, X7 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 PXOR runtime·aeskeysched+64(SB), X4 PXOR runtime·aeskeysched+80(SB), X5 PXOR runtime·aeskeysched+96(SB), X6 PXOR runtime·aeskeysched+112(SB), X7 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 // start with last (possibly overlapping) block MOVOU -128(AX)(CX*1), X8 MOVOU -112(AX)(CX*1), X9 MOVOU -96(AX)(CX*1), X10 MOVOU -80(AX)(CX*1), X11 MOVOU -64(AX)(CX*1), X12 MOVOU -48(AX)(CX*1), X13 MOVOU -32(AX)(CX*1), X14 MOVOU -16(AX)(CX*1), X15 // xor in seed PXOR X0, X8 PXOR X1, X9 PXOR X2, X10 PXOR X3, X11 PXOR X4, X12 PXOR X5, X13 PXOR X6, X14 PXOR X7, X15 // compute number of remaining 128-byte blocks DECQ CX SHRQ $7, CX aesloop: // scramble state AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 // scramble state, xor in a block MOVOU (AX), X0 MOVOU 16(AX), X1 MOVOU 32(AX), X2 MOVOU 48(AX), X3 AESENC X0, X8 AESENC X1, X9 AESENC X2, X10 AESENC X3, X11 MOVOU 64(AX), X4 MOVOU 80(AX), X5 MOVOU 96(AX), X6 MOVOU 112(AX), X7 AESENC X4, X12 AESENC X5, X13 AESENC X6, X14 AESENC X7, X15 ADDQ $128, AX DECQ CX JNE aesloop // 3 more scrambles to finish AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 PXOR X12, X8 PXOR X13, X9 PXOR X14, X10 PXOR X15, X11 PXOR X10, X8 PXOR X11, X9 PXOR X9, X8 MOVQ X8, (DX) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to data MOVQ h+8(FP), X0 // seed PINSRD $2, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, ret+16(FP) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 MOVQ p+0(FP), AX // ptr to data MOVQ h+8(FP), X0 // seed PINSRQ $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, ret+16(FP) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/8, $0x0000000000000000 DATA masks<>+0x08(SB)/8, $0x0000000000000000 DATA masks<>+0x10(SB)/8, $0x00000000000000ff DATA masks<>+0x18(SB)/8, $0x0000000000000000 DATA masks<>+0x20(SB)/8, $0x000000000000ffff DATA masks<>+0x28(SB)/8, $0x0000000000000000 DATA masks<>+0x30(SB)/8, $0x0000000000ffffff DATA masks<>+0x38(SB)/8, $0x0000000000000000 DATA masks<>+0x40(SB)/8, $0x00000000ffffffff DATA masks<>+0x48(SB)/8, $0x0000000000000000 DATA masks<>+0x50(SB)/8, $0x000000ffffffffff DATA masks<>+0x58(SB)/8, $0x0000000000000000 DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff DATA masks<>+0x68(SB)/8, $0x0000000000000000 DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff DATA masks<>+0x78(SB)/8, $0x0000000000000000 DATA masks<>+0x80(SB)/8, $0xffffffffffffffff DATA masks<>+0x88(SB)/8, $0x0000000000000000 DATA masks<>+0x90(SB)/8, $0xffffffffffffffff DATA masks<>+0x98(SB)/8, $0x00000000000000ff DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff DATA masks<>+0xa8(SB)/8, $0x000000000000ffff DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff GLOBL masks<>(SB),RODATA,$256 TEXT ·checkASM(SB),NOSPLIT,$0-1 // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte MOVQ $masks<>(SB), AX MOVQ $shifts<>(SB), BX ORQ BX, AX TESTQ $15, AX SETEQ ret+0(FP) RET // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/8, $0x0000000000000000 DATA shifts<>+0x08(SB)/8, $0x0000000000000000 DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 GLOBL shifts<>(SB),RODATA,$256 // memequal(p, q unsafe.Pointer, size uintptr) bool TEXT runtime·memequal(SB),NOSPLIT,$0-25 MOVQ a+0(FP), SI MOVQ b+8(FP), DI CMPQ SI, DI JEQ eq MOVQ size+16(FP), BX LEAQ ret+24(FP), AX JMP runtime·memeqbody(SB) eq: MOVB $1, ret+24(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-17 MOVQ a+0(FP), SI MOVQ b+8(FP), DI CMPQ SI, DI JEQ eq MOVQ 8(DX), BX // compiler stores size at offset 8 in the closure LEAQ ret+16(FP), AX JMP runtime·memeqbody(SB) eq: MOVB $1, ret+16(FP) RET // a in SI // b in DI // count in BX // address of result byte in AX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 CMPQ BX, $8 JB small CMPQ BX, $64 JB bigloop CMPB runtime·support_avx2(SB), $1 JE hugeloop_avx2 // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop MOVB $0, (AX) RET // 64 bytes at a time using ymm registers hugeloop_avx2: CMPQ BX, $64 JB bigloop_avx2 VMOVDQU (SI), Y0 VMOVDQU (DI), Y1 VMOVDQU 32(SI), Y2 VMOVDQU 32(DI), Y3 VPCMPEQB Y1, Y0, Y4 VPCMPEQB Y2, Y3, Y5 VPAND Y4, Y5, Y6 VPMOVMSKB Y6, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffffffff JEQ hugeloop_avx2 VZEROUPPER MOVB $0, (AX) RET bigloop_avx2: VZEROUPPER // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop MOVB $0, (AX) RET // remaining 0-8 bytes leftover: MOVQ -8(SI)(BX*1), CX MOVQ -8(DI)(BX*1), DX CMPQ CX, DX SETEQ (AX) RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ -8(SI)(BX*1), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(BX*1), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ (AX) RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-40 MOVQ s1_base+0(FP), SI MOVQ s1_len+8(FP), BX MOVQ s2_base+16(FP), DI MOVQ s2_len+24(FP), DX LEAQ ret+32(FP), R9 JMP runtime·cmpbody(SB) TEXT bytes·Compare(SB),NOSPLIT,$0-56 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+24(FP), DI MOVQ s2+32(FP), DX LEAQ res+48(FP), R9 JMP runtime·cmpbody(SB) // input: // SI = a // DI = b // BX = alen // DX = blen // R9 = address of output word (stores -1/0/1 here) TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPQ SI, DI JEQ allsame CMPQ BX, DX MOVQ DX, R8 CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare CMPQ R8, $8 JB small CMPQ R8, $63 JBE loop CMPB runtime·support_avx2(SB), $1 JEQ big_loop_avx2 JMP big_loop loop: CMPQ R8, $16 JBE _0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, R8 JMP loop diff64: ADDQ $48, SI ADDQ $48, DI JMP diff16 diff48: ADDQ $32, SI ADDQ $32, DI JMP diff16 diff32: ADDQ $16, SI ADDQ $16, DI // AX = bit mask of differences diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 MOVQ AX, (R9) RET // 0 through 16 bytes left, alen>=8, blen>=8 _0through16: CMPQ R8, $8 JBE _0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE diff8 _0through8: MOVQ -8(SI)(R8*1), AX MOVQ -8(DI)(R8*1), CX CMPQ AX, CX JEQ allsame // AX and CX contain parts of a and b that differ. diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 MOVQ AX, (R9) RET // 0-7 bytes in common small: LEAQ (R8*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA si_high MOVQ (SI), SI JMP si_finish si_high: MOVQ -8(SI)(R8*1), SI SHRQ CX, SI si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(R8*1), DI SHRQ CX, DI di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 MOVQ AX, (R9) RET allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result MOVQ AX, (R9) RET // this works for >= 64 bytes of data. big_loop: MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX JNE diff16 MOVOU 16(SI), X0 MOVOU 16(DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX JNE diff32 MOVOU 32(SI), X0 MOVOU 32(DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX JNE diff48 MOVOU 48(SI), X0 MOVOU 48(DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX JNE diff64 ADDQ $64, SI ADDQ $64, DI SUBQ $64, R8 CMPQ R8, $64 JBE loop JMP big_loop // Compare 64-bytes per loop iteration. // Loop is unrolled and uses AVX2. big_loop_avx2: VMOVDQU (SI), Y2 VMOVDQU (DI), Y3 VMOVDQU 32(SI), Y4 VMOVDQU 32(DI), Y5 VPCMPEQB Y2, Y3, Y0 VPMOVMSKB Y0, AX XORL $0xffffffff, AX JNE diff32_avx2 VPCMPEQB Y4, Y5, Y6 VPMOVMSKB Y6, AX XORL $0xffffffff, AX JNE diff64_avx2 ADDQ $64, SI ADDQ $64, DI SUBQ $64, R8 CMPQ R8, $64 JB big_loop_avx2_exit JMP big_loop_avx2 // Avoid AVX->SSE transition penalty and search first 32 bytes of 64 byte chunk. diff32_avx2: VZEROUPPER JMP diff16 // Same as diff32_avx2, but for last 32 bytes. diff64_avx2: VZEROUPPER JMP diff48 // For <64 bytes remainder jump to normal loop. big_loop_avx2_exit: VZEROUPPER JMP loop TEXT strings·indexShortStr(SB),NOSPLIT,$0-40 MOVQ s+0(FP), DI // We want len in DX and AX, because PCMPESTRI implicitly consumes them MOVQ s_len+8(FP), DX MOVQ c+16(FP), BP MOVQ c_len+24(FP), AX MOVQ DI, R10 LEAQ ret+32(FP), R11 JMP runtime·indexShortStr(SB) TEXT bytes·indexShortStr(SB),NOSPLIT,$0-56 MOVQ s+0(FP), DI MOVQ s_len+8(FP), DX MOVQ c+24(FP), BP MOVQ c_len+32(FP), AX MOVQ DI, R10 LEAQ ret+48(FP), R11 JMP runtime·indexShortStr(SB) // AX: length of string, that we are searching for // DX: length of string, in which we are searching // DI: pointer to string, in which we are searching // BP: pointer to string, that we are searching for // R11: address, where to put return value TEXT runtime·indexShortStr(SB),NOSPLIT,$0 CMPQ AX, DX JA fail CMPQ DX, $16 JAE sse42 no_sse42: CMPQ AX, $2 JA _3_or_more MOVW (BP), BP LEAQ -1(DI)(DX*1), DX loop2: MOVW (DI), SI CMPW SI,BP JZ success ADDQ $1,DI CMPQ DI,DX JB loop2 JMP fail _3_or_more: CMPQ AX, $3 JA _4_or_more MOVW 1(BP), BX MOVW (BP), BP LEAQ -2(DI)(DX*1), DX loop3: MOVW (DI), SI CMPW SI,BP JZ partial_success3 ADDQ $1,DI CMPQ DI,DX JB loop3 JMP fail partial_success3: MOVW 1(DI), SI CMPW SI,BX JZ success ADDQ $1,DI CMPQ DI,DX JB loop3 JMP fail _4_or_more: CMPQ AX, $4 JA _5_or_more MOVL (BP), BP LEAQ -3(DI)(DX*1), DX loop4: MOVL (DI), SI CMPL SI,BP JZ success ADDQ $1,DI CMPQ DI,DX JB loop4 JMP fail _5_or_more: CMPQ AX, $7 JA _8_or_more LEAQ 1(DI)(DX*1), DX SUBQ AX, DX MOVL -4(BP)(AX*1), BX MOVL (BP), BP loop5to7: MOVL (DI), SI CMPL SI,BP JZ partial_success5to7 ADDQ $1,DI CMPQ DI,DX JB loop5to7 JMP fail partial_success5to7: MOVL -4(AX)(DI*1), SI CMPL SI,BX JZ success ADDQ $1,DI CMPQ DI,DX JB loop5to7 JMP fail _8_or_more: CMPQ AX, $8 JA _9_or_more MOVQ (BP), BP LEAQ -7(DI)(DX*1), DX loop8: MOVQ (DI), SI CMPQ SI,BP JZ success ADDQ $1,DI CMPQ DI,DX JB loop8 JMP fail _9_or_more: CMPQ AX, $15 JA _16_or_more LEAQ 1(DI)(DX*1), DX SUBQ AX, DX MOVQ -8(BP)(AX*1), BX MOVQ (BP), BP loop9to15: MOVQ (DI), SI CMPQ SI,BP JZ partial_success9to15 ADDQ $1,DI CMPQ DI,DX JB loop9to15 JMP fail partial_success9to15: MOVQ -8(AX)(DI*1), SI CMPQ SI,BX JZ success ADDQ $1,DI CMPQ DI,DX JB loop9to15 JMP fail _16_or_more: CMPQ AX, $16 JA _17_or_more MOVOU (BP), X1 LEAQ -15(DI)(DX*1), DX loop16: MOVOU (DI), X2 PCMPEQB X1, X2 PMOVMSKB X2, SI CMPQ SI, $0xffff JE success ADDQ $1,DI CMPQ DI,DX JB loop16 JMP fail _17_or_more: CMPQ AX, $31 JA _32_or_more LEAQ 1(DI)(DX*1), DX SUBQ AX, DX MOVOU -16(BP)(AX*1), X0 MOVOU (BP), X1 loop17to31: MOVOU (DI), X2 PCMPEQB X1,X2 PMOVMSKB X2, SI CMPQ SI, $0xffff JE partial_success17to31 ADDQ $1,DI CMPQ DI,DX JB loop17to31 JMP fail partial_success17to31: MOVOU -16(AX)(DI*1), X3 PCMPEQB X0, X3 PMOVMSKB X3, SI CMPQ SI, $0xffff JE success ADDQ $1,DI CMPQ DI,DX JB loop17to31 JMP fail // We can get here only when AVX2 is enabled and cutoff for indexShortStr is set to 63 // So no need to check cpuid _32_or_more: CMPQ AX, $32 JA _33_to_63 VMOVDQU (BP), Y1 LEAQ -31(DI)(DX*1), DX loop32: VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPMOVMSKB Y3, SI CMPL SI, $0xffffffff JE success_avx2 ADDQ $1,DI CMPQ DI,DX JB loop32 JMP fail_avx2 _33_to_63: LEAQ 1(DI)(DX*1), DX SUBQ AX, DX VMOVDQU -32(BP)(AX*1), Y0 VMOVDQU (BP), Y1 loop33to63: VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPMOVMSKB Y3, SI CMPL SI, $0xffffffff JE partial_success33to63 ADDQ $1,DI CMPQ DI,DX JB loop33to63 JMP fail_avx2 partial_success33to63: VMOVDQU -32(AX)(DI*1), Y3 VPCMPEQB Y0, Y3, Y4 VPMOVMSKB Y4, SI CMPL SI, $0xffffffff JE success_avx2 ADDQ $1,DI CMPQ DI,DX JB loop33to63 fail_avx2: VZEROUPPER fail: MOVQ $-1, (R11) RET success_avx2: VZEROUPPER JMP success sse42: CMPB runtime·support_sse42(SB), $1 JNE no_sse42 CMPQ AX, $12 // PCMPESTRI is slower than normal compare, // so using it makes sense only if we advance 4+ bytes per compare // This value was determined experimentally and is the ~same // on Nehalem (first with SSE42) and Haswell. JAE _9_or_more LEAQ 16(BP), SI TESTW $0xff0, SI JEQ no_sse42 MOVOU (BP), X1 LEAQ -15(DI)(DX*1), SI MOVQ $16, R9 SUBQ AX, R9 // We advance by 16-len(sep) each iteration, so precalculate it into R9 loop_sse42: // 0x0c means: unsigned byte compare (bits 0,1 are 00) // for equality (bits 2,3 are 11) // result is not masked or inverted (bits 4,5 are 00) // and corresponds to first matching byte (bit 6 is 0) PCMPESTRI $0x0c, (DI), X1 // CX == 16 means no match, // CX > R9 means partial match at the end of the string, // otherwise sep is at offset CX from X1 start CMPQ CX, R9 JBE sse42_success ADDQ R9, DI CMPQ DI, SI JB loop_sse42 PCMPESTRI $0x0c, -1(SI), X1 CMPQ CX, R9 JA fail LEAQ -1(SI), DI sse42_success: ADDQ CX, DI success: SUBQ R10, DI MOVQ DI, (R11) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+24(FP), AL LEAQ ret+32(FP), R8 JMP runtime·indexbytebody(SB) TEXT strings·IndexByte(SB),NOSPLIT,$0-32 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+16(FP), AL LEAQ ret+24(FP), R8 JMP runtime·indexbytebody(SB) // input: // SI: data // BX: data len // AL: byte sought // R8: address to put result TEXT runtime·indexbytebody(SB),NOSPLIT,$0 // Shuffle X0 around so that each byte contains // the character we're looking for. MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 CMPQ BX, $16 JLT small MOVQ SI, DI CMPQ BX, $32 JA avx2 sse: LEAQ -16(SI)(BX*1), AX // AX = address of last 16 bytes JMP sseloopentry sseloop: // Move the next 16-byte chunk of the data into X1. MOVOU (DI), X1 // Compare bytes in X0 to X1. PCMPEQB X0, X1 // Take the top bit of each byte in X1 and put the result in DX. PMOVMSKB X1, DX // Find first set bit, if any. BSFL DX, DX JNZ ssesuccess // Advance to next block. ADDQ $16, DI sseloopentry: CMPQ DI, AX JB sseloop // Search the last 16-byte chunk. This chunk may overlap with the // chunks we've already searched, but that's ok. MOVQ AX, DI MOVOU (AX), X1 PCMPEQB X0, X1 PMOVMSKB X1, DX BSFL DX, DX JNZ ssesuccess failure: MOVQ $-1, (R8) RET // We've found a chunk containing the byte. // The chunk was loaded from DI. // The index of the matching byte in the chunk is DX. // The start of the data is SI. ssesuccess: SUBQ SI, DI // Compute offset of chunk within data. ADDQ DX, DI // Add offset of byte within chunk. MOVQ DI, (R8) RET // handle for lengths < 16 small: TESTQ BX, BX JEQ failure // Check if we'll load across a page boundary. LEAQ 16(SI), AX TESTW $0xff0, AX JEQ endofpage MOVOU (SI), X1 // Load data PCMPEQB X0, X1 // Compare target byte with each byte in data. PMOVMSKB X1, DX // Move result bits to integer register. BSFL DX, DX // Find first set bit. JZ failure // No set bit, failure. CMPL DX, BX JAE failure // Match is past end of data. MOVQ DX, (R8) RET endofpage: MOVOU -16(SI)(BX*1), X1 // Load data into the high end of X1. PCMPEQB X0, X1 // Compare target byte with each byte in data. PMOVMSKB X1, DX // Move result bits to integer register. MOVL BX, CX SHLL CX, DX SHRL $16, DX // Shift desired bits down to bottom of register. BSFL DX, DX // Find first set bit. JZ failure // No set bit, failure. MOVQ DX, (R8) RET avx2: CMPB runtime·support_avx2(SB), $1 JNE sse MOVD AX, X0 LEAQ -32(SI)(BX*1), R11 VPBROADCASTB X0, Y1 avx2_loop: VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPTEST Y3, Y3 JNZ avx2success ADDQ $32, DI CMPQ DI, R11 JLT avx2_loop MOVQ R11, DI VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPTEST Y3, Y3 JNZ avx2success VZEROUPPER MOVQ $-1, (R8) RET avx2success: VPMOVMSKB Y3, DX BSFL DX, DX SUBQ SI, DI ADDQ DI, DX MOVQ DX, (R8) VZEROUPPER RET TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVQ a_len+8(FP), BX MOVQ b_len+32(FP), CX CMPQ BX, CX JNE eqret MOVQ a+0(FP), SI MOVQ b+24(FP), DI LEAQ ret+48(FP), AX JMP runtime·memeqbody(SB) eqret: MOVB $0, ret+48(FP) RET TEXT bytes·countByte(SB),NOSPLIT,$0-40 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+24(FP), AL LEAQ ret+32(FP), R8 JMP runtime·countByte(SB) TEXT strings·countByte(SB),NOSPLIT,$0-32 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+16(FP), AL LEAQ ret+24(FP), R8 JMP runtime·countByte(SB) // input: // SI: data // BX: data len // AL: byte sought // R8: address to put result // This requires the POPCNT instruction TEXT runtime·countByte(SB),NOSPLIT,$0 // Shuffle X0 around so that each byte contains // the character we're looking for. MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 CMPQ BX, $16 JLT small MOVQ $0, R12 // Accumulator MOVQ SI, DI CMPQ BX, $32 JA avx2 sse: LEAQ -16(SI)(BX*1), AX // AX = address of last 16 bytes JMP sseloopentry sseloop: // Move the next 16-byte chunk of the data into X1. MOVOU (DI), X1 // Compare bytes in X0 to X1. PCMPEQB X0, X1 // Take the top bit of each byte in X1 and put the result in DX. PMOVMSKB X1, DX // Count number of matching bytes POPCNTL DX, DX // Accumulate into R12 ADDQ DX, R12 // Advance to next block. ADDQ $16, DI sseloopentry: CMPQ DI, AX JBE sseloop // Get the number of bytes to consider in the last 16 bytes ANDQ $15, BX JZ end // Create mask to ignore overlap between previous 16 byte block // and the next. MOVQ $16,CX SUBQ BX, CX MOVQ $0xFFFF, R10 SARQ CL, R10 SALQ CL, R10 // Process the last 16-byte chunk. This chunk may overlap with the // chunks we've already searched so we need to mask part of it. MOVOU (AX), X1 PCMPEQB X0, X1 PMOVMSKB X1, DX // Apply mask ANDQ R10, DX POPCNTL DX, DX ADDQ DX, R12 end: MOVQ R12, (R8) RET // handle for lengths < 16 small: TESTQ BX, BX JEQ endzero // Check if we'll load across a page boundary. LEAQ 16(SI), AX TESTW $0xff0, AX JEQ endofpage // We must ignore high bytes as they aren't part of our slice. // Create mask. MOVB BX, CX MOVQ $1, R10 SALQ CL, R10 SUBQ $1, R10 // Load data MOVOU (SI), X1 // Compare target byte with each byte in data. PCMPEQB X0, X1 // Move result bits to integer register. PMOVMSKB X1, DX // Apply mask ANDQ R10, DX POPCNTL DX, DX // Directly return DX, we don't need to accumulate // since we have <16 bytes. MOVQ DX, (R8) RET endzero: MOVQ $0, (R8) RET endofpage: // We must ignore low bytes as they aren't part of our slice. MOVQ $16,CX SUBQ BX, CX MOVQ $0xFFFF, R10 SARQ CL, R10 SALQ CL, R10 // Load data into the high end of X1. MOVOU -16(SI)(BX*1), X1 // Compare target byte with each byte in data. PCMPEQB X0, X1 // Move result bits to integer register. PMOVMSKB X1, DX // Apply mask ANDQ R10, DX // Directly return DX, we don't need to accumulate // since we have <16 bytes. POPCNTL DX, DX MOVQ DX, (R8) RET avx2: CMPB runtime·support_avx2(SB), $1 JNE sse MOVD AX, X0 LEAQ -32(SI)(BX*1), R11 VPBROADCASTB X0, Y1 avx2_loop: VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPMOVMSKB Y3, DX POPCNTL DX, DX ADDQ DX, R12 ADDQ $32, DI CMPQ DI, R11 JLE avx2_loop // If last block is already processed, // skip to the end. CMPQ DI, R11 JEQ endavx // Load address of the last 32 bytes. // There is an overlap with the previous block. MOVQ R11, DI VMOVDQU (DI), Y2 VPCMPEQB Y1, Y2, Y3 VPMOVMSKB Y3, DX // Exit AVX mode. VZEROUPPER // Create mask to ignore overlap between previous 32 byte block // and the next. ANDQ $31, BX MOVQ $32,CX SUBQ BX, CX MOVQ $0xFFFFFFFF, R10 SARQ CL, R10 SALQ CL, R10 // Apply mask ANDQ R10, DX POPCNTL DX, DX ADDQ DX, R12 MOVQ R12, (R8) RET endavx: // Exit AVX mode. VZEROUPPER MOVQ R12, (R8) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), AX MOVQ m_curg(AX), AX MOVQ (g_stack+stack_hi)(AX), AX RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$0-0 BYTE $0x90 // NOP CALL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x90 // NOP // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save MOVQ runtime·lastmoduledatap(SB), AX MOVQ DI, moduledata_next(AX) MOVQ DI, runtime·lastmoduledatap(SB) POPQ R15 RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - DI is the destination of the write // - AX is the value being written at DI // It clobbers FLAGS. It does not clobber any general-purpose registers, // but may clobber others (e.g., SSE registers). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$120 // Save the registers clobbered by the fast path. This is slightly // faster than having the caller spill these. MOVQ R14, 104(SP) MOVQ R13, 112(SP) // TODO: Consider passing g.m.p in as an argument so they can be shared // across a sequence of write barriers. get_tls(R13) MOVQ g(R13), R13 MOVQ g_m(R13), R13 MOVQ m_p(R13), R13 MOVQ (p_wbBuf+wbBuf_next)(R13), R14 // Increment wbBuf.next position. LEAQ 16(R14), R14 MOVQ R14, (p_wbBuf+wbBuf_next)(R13) CMPQ R14, (p_wbBuf+wbBuf_end)(R13) // Record the write. MOVQ AX, -16(R14) // Record value MOVQ (DI), R13 // TODO: This turns bad writes into bad reads. MOVQ R13, -8(R14) // Record *slot // Is the buffer full? (flags set in CMPQ above) JEQ flush ret: MOVQ 104(SP), R14 MOVQ 112(SP), R13 // Do the write. MOVQ AX, (DI) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. // It is possible for wbBufFlush to clobber other registers // (e.g., SSE registers), but the compiler takes care of saving // those in the caller if necessary. This strikes a balance // with registers that are likely to be used. // // We don't have type information for these, but all code under // here is NOSPLIT, so nothing will observe these. // // TODO: We could strike a different balance; e.g., saving X0 // and not saving GP registers that are less likely to be used. MOVQ DI, 0(SP) // Also first argument to wbBufFlush MOVQ AX, 8(SP) // Also second argument to wbBufFlush MOVQ BX, 16(SP) MOVQ CX, 24(SP) MOVQ DX, 32(SP) // DI already saved MOVQ SI, 40(SP) MOVQ BP, 48(SP) MOVQ R8, 56(SP) MOVQ R9, 64(SP) MOVQ R10, 72(SP) MOVQ R11, 80(SP) MOVQ R12, 88(SP) // R13 already saved // R14 already saved MOVQ R15, 96(SP) // This takes arguments DI and AX CALL runtime·wbBufFlush(SB) MOVQ 0(SP), DI MOVQ 8(SP), AX MOVQ 16(SP), BX MOVQ 24(SP), CX MOVQ 32(SP), DX MOVQ 40(SP), SI MOVQ 48(SP), BP MOVQ 56(SP), R8 MOVQ 64(SP), R9 MOVQ 72(SP), R10 MOVQ 80(SP), R11 MOVQ 88(SP), R12 MOVQ 96(SP), R15 JMP ret