Get Going ---- Rob Pike ---- (September 10, 2008) This document is a tutorial introduction to the basics of the Go systems programming language, intended for programmers familiar with C or C++. It is not a comprehensive guide to the language; at the moment the closest to that is the draft specification: /doc/go_lang.html To check out the compiler and tools and be ready to run Go programs, see /doc/go_setup.html The presentation proceeds through a series of modest programs to illustrate key features of the language. All the programs work (at time of writing) and are checked in at /doc/progs Program snippets are annotated with the line number in the original file; for cleanliness, blank lines remain blank. Hello, World ---- Let's start in the usual way: --PROG progs/helloworld.go Every Go source file declares which package it's part of using a "package" statement. The "main" package's "main" function is where the program starts running (after any initialization). Function declarations are introduced with the "func" keyword. Notice that string constants can contain Unicode characters, encoded in UTF-8. Go is defined to accept UTF-8 input. Strings are arrays of bytes, usually used to store Unicode strings represented in UTF-8. The built-in function "print()" has been used during the early stages of development of the language but is not guaranteed to last. Here's a better version of the program that doesn't depend on this "print()": --PROG progs/helloworld2.go This version imports the ''os'' package to acess its "Stdout" variable, of type "*OS.FD"; given "OS.Stdout" we can use its "WriteString" method to print the string. The comment convention is the same as in C++: /* ... */ // ... Echo ---- Next up, here's a version of the Unix utility "echo(1)": --PROG progs/echo.go It's still fairly small but it's doing a number of new things. In the last example, we saw "func" introducing a function. The keywords "var", "const", and "type" (not used yet) also introduce declarations, as does "import". Notice that we can group declarations of the same sort into parenthesized, semicolon-separated lists if we want, as on lines 3-6 and 10-13. But it's not necessary to do so; we could have said const Space = " " const Newline = "\n" Semicolons aren't needed here; in fact, semicolons are unnecessary after any top-level declaration, even though they are needed as separators within a parenthesized list of declarations. Having imported the "Flag" package, line 8 creates a global variable to hold the value of echo's -n flag. (The nil indicates a nice feature not needed here; see the source in "src/lib/flag.go" for details). In "main.main", we parse the arguments (line 16) and then create a local string variable we will use to build the output. The declaration statement has the form var s string = ""; This is the "var" keyword, followed by the name of the variable, followed by its type, followed by an equals sign and an initial value for the variable. Go tries to be terse, and this declaration could be shortened. Since the string constant is of type string, we don't have to tell the compiler that. We could write var s = ""; or we could go even shorter and write the idiom s := ""; The := operator is used a lot in Go to represent an initializing declaration. (For those who know Limbo, it's the same, except notice that there is no colon after the name in a full "var" declaration.) And here's one in the "for" clause on the next line: --PROG progs/echo.go /for/ The "Flag" package has parsed the arguments and left the non-flags in a list that can be iterated over in the obvious way. The Go "for" statement differs from that of C in a number of ways. First, it's the only looping construct; there is no "while" or "do". Second, there are no parentheses on the clause, but the braces on the body are mandatory. Later examples will show some other ways "for" can be written. The body of the loop builds up the string "s" by appending (using +=) the flags and separating spaces. After the loop, if the "-n" flag is not set, it appends a newline, and then writes the result. Notice that "main.main" is a niladic function with no return type. It's defined that way. Falling off the end of "main.main" means ''success''; if you want to signal erroneous return, use sys.exit(1) The "sys" package is built in and contains some essentials for getting started; for instance, "sys.argc()" and "sys.argv(int)" are used by the "Flag" package to access the arguments. More to come.