// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Bignum // A package for arbitrary precision arithmethic. // It implements the following numeric types: // // - Natural unsigned integer numbers // - Integer signed integer numbers // - Rational rational numbers // ---------------------------------------------------------------------------- // Representation // // A natural number of the form // // x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0] // // with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n, // with the digits x[i] as the array elements. 0 is represented as an // empty array (length == 0). // // A natural number is normalized if the array contains no leading 0 digits. // During arithmetic operations, denormalized values may occur which are // always normalized before returning the final result. // // The base B is chosen as large as possible on a given platform but there // are a few constraints besides the largest unsigned integer type available. // TODO describe the constraints. type Word uint64; const LogW = 64; const LogH = 4; // bits for a hex digit (= "small" number) const H = 1 << LogH; const LogB = LogW - LogH; const L = LogB; const B = 1 << LogB; const M = B - 1; // For division const ( L3 = L / 3; B3 = 1 << L3; M3 = B3 - 1; ) type ( Word3 uint32; Natural3 [] Word3; ) // ---------------------------------------------------------------------------- // Support // TODO replace this with a Go built-in assert func assert(p bool) { if !p { panic("assert failed"); } } func IsSmall(x Word) bool { return x < H; } func Split(x Word) (Word, Word) { return x>>L, x&M; } export func Dump(x *[]Word) { print("[", len(x), "]"); for i := len(x) - 1; i >= 0; i-- { print(" ", x[i]); } println(); } // ---------------------------------------------------------------------------- // Natural numbers export type Natural []Word; export var NatZero *Natural = new(Natural, 0); export func NewNat(x Word) *Natural { var z *Natural; switch { case x == 0: z = NatZero; case x < B: z = new(Natural, 1); z[0] = x; return z; default: z = new(Natural, 2); z[1], z[0] = Split(x); } return z; } func Normalize(x *Natural) *Natural { n := len(x); for n > 0 && x[n - 1] == 0 { n-- } if n < len(x) { x = x[0 : n]; // trim leading 0's } return x; } func Normalize3(x *Natural3) *Natural3 { n := len(x); for n > 0 && x[n - 1] == 0 { n-- } if n < len(x) { x = x[0 : n]; // trim leading 0's } return x; } func (x *Natural) IsZero() bool { return len(x) == 0; } func (x *Natural) Add(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Add(x); } assert(n >= m); z := new(Natural, n + 1); i := 0; c := Word(0); for ; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); } for ; i < n; i++ { c, z[i] = Split(x[i] + c); } z[i] = c; return Normalize(z); } func (x *Natural) Sub(y *Natural) *Natural { n := len(x); m := len(y); assert(n >= m); z := new(Natural, n); i := 0; c := Word(0); for ; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); } for ; i < n; i++ { c, z[i] = Split(x[i] + c); } assert(c == 0); // x.Sub(y) must be called with x >= y return Normalize(z); } // Computes x = x*a + c (in place) for "small" a's. func (x* Natural) MulAdd1(a, c Word) *Natural { assert(IsSmall(a-1) && IsSmall(c)); if x.IsZero() || a == 0 { return NewNat(c); } n := len(x); z := new(Natural, n + 1); for i := 0; i < n; i++ { c, z[i] = Split(x[i]*a + c); } z[n] = c; return Normalize(z); } // Returns c = x*y div B, z = x*y mod B. func Mul1(x, y Word) (Word, Word) { // Split x and y into 2 sub-digits each (in base sqrt(B)), // multiply the digits separately while avoiding overflow, // and return the product as two separate digits. const L0 = (L + 1)/2; const L1 = L - L0; const DL = L0 - L1; // 0 or 1 const b = 1<>L0, x&m; y1, y0 := y>>L0, y&m; // x*y = t2*b^2 + t1*b + t0 t0 := x0*y0; t1 := x1*y0 + x0*y1; t2 := x1*y1; // compute the result digits but avoid overflow // z = z1*B + z0 = x*y z0 := (t1<>L0)>>L1; return z1, z0; } func (x *Natural) Mul(y *Natural) *Natural { n := len(x); m := len(y); z := new(Natural, n + m); for j := 0; j < m; j++ { d := y[j]; if d != 0 { c := Word(0); for i := 0; i < n; i++ { // z[i+j] += x[i]*d + c; z1, z0 := Mul1(x[i], d); c, z[i+j] = Split(z[i+j] + z0 + c); c += z1; } z[n+j] = c; } } return Normalize(z); } // BUG use these until 6g shifts are working properly func shl(x Word, s uint) Word { return x << s; } func shr(x Word, s uint) Word { return x >> s; } func Shl1(x, c Word, s uint) (Word, Word) { assert(s <= LogB); return shr(x, (LogB - s)), shl(x, s)&M | c } func (x *Natural) Shl(s uint) *Natural { n := len(x); si := int(s/LogB); s = s%LogB; z := new(Natural, n + si + 1); i := 0; c := Word(0); for ; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); } z[i+si] = c; return Normalize(z); } func (x *Natural) Shr(s uint) *Natural { panic("incomplete"); return nil } func SplitBase(x *Natural) *Natural3 { xl := len(x); z := new(Natural3, xl * 3); for i, j := 0, 0; i < xl; i, j = i + 1, j + 3 { t := x[i]; z[j] = Word3(t & M3); t >>= L3; j++; z[j] = Word3(t & M3); t >>= L3; j++; z[j] = Word3(t & M3); t >>= L3; j++; } return Normalize3(z); } func Scale(x *Natural, f Word) *Natural3 { return nil; } func TrialDigit(r, d *Natural3, k, m int) Word { km := k + m; assert(2 <= m && m <= km); r3 := (Word(r[km]) << L3 + Word(r[km - 1])) << L3 + Word(r[km - 2]); d2 := Word(d[m - 1]) << L3 + Word(d[m - 2]); qt := r3 / d2; if qt >= B { qt = B - 1; } return qt; } func DivMod(x, y *Natural) { xl := len(x); yl := len(y); assert(2 <= yl && yl <= xl); // use special-case algorithm otherwise f := B / (y[yl - 1] + 1); r := Scale(x, f); d := Scale(y, f); n := len(r); m := len(d); for k := n - m; k >= 0; k-- { qt := TrialDigit(r, d, k, m); } } func (x *Natural) Div(y *Natural) *Natural { panic("UNIMPLEMENTED"); return nil; } func (x *Natural) Mod(y *Natural) *Natural { panic("UNIMPLEMENTED"); return nil; } func (x *Natural) Cmp(y *Natural) int { xl := len(x); yl := len(y); if xl != yl || xl == 0 { return xl - yl; } i := xl - 1; for i > 0 && x[i] == y[i] { i--; } d := 0; switch { case x[i] < y[i]: d = -1; case x[i] > y[i]: d = 1; } return d; } func Log1(x Word) int { n := -1; for x != 0 { x >>= 1; n++; } return n; } func (x *Natural) Log() int { n := len(x); if n > 0 { n = (n - 1)*L + Log1(x[n - 1]); } else { n = -1; } return n; } func (x *Natural) And(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.And(x); } assert(n >= m); z := new(Natural, n); i := 0; for ; i < m; i++ { z[i] = x[i] & y[i]; } for ; i < n; i++ { z[i] = x[i]; } return Normalize(z); } func (x *Natural) Or(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Or(x); } assert(n >= m); z := new(Natural, n); i := 0; for ; i < m; i++ { z[i] = x[i] | y[i]; } for ; i < n; i++ { z[i] = x[i]; } return Normalize(z); } func (x *Natural) Xor(y *Natural) *Natural { n := len(x); m := len(y); if n < m { return y.Xor(x); } assert(n >= m); z := new(Natural, n); i := 0; for ; i < m; i++ { z[i] = x[i] ^ y[i]; } for ; i < n; i++ { z[i] = x[i]; } return Normalize(z); } func Copy(x *Natural) *Natural { z := new(Natural, len(x)); //*z = *x; // BUG assignment does't work yet for i := len(x) - 1; i >= 0; i-- { z[i] = x[i]; } return z; } // Computes x = x div d (in place - the recv maybe modified) for "small" d's. // Returns updated x and x mod d. func (x *Natural) DivMod1(d Word) (*Natural, Word) { assert(0 < d && IsSmall(d - 1)); c := Word(0); for i := len(x) - 1; i >= 0; i-- { c = c<= 10); // for now // approx. length: 1 char for 3 bits n := x.Log()/3 + 10; // +10 (round up) - what is the right number? s := new([]byte, n); // convert const hex = "0123456789abcdef"; i := n; x = Copy(x); // don't destroy recv for !x.IsZero() { i--; var d Word; x, d = x.DivMod1(base); s[i] = hex[d]; }; return string(s[i : n]); } func MulRange(a, b Word) *Natural { switch { case a > b: return NewNat(1); case a == b: return NewNat(a); case a + 1 == b: return NewNat(a).Mul(NewNat(b)); } m := (a + b)>>1; assert(a <= m && m < b); return MulRange(a, m).Mul(MulRange(m + 1, b)); } export func Fact(n Word) *Natural { // Using MulRange() instead of the basic for-loop // lead to faster factorial computation. return MulRange(2, n); } func HexValue(ch byte) Word { d := Word(H); switch { case '0' <= ch && ch <= '9': d = Word(ch - '0'); case 'a' <= ch && ch <= 'f': d = Word(ch - 'a') + 10; case 'A' <= ch && ch <= 'F': d = Word(ch - 'A') + 10; } return d; } // TODO auto-detect base if base argument is 0 export func NatFromString(s string, base Word) *Natural { x := NatZero; for i := 0; i < len(s); i++ { d := HexValue(s[i]); if d < base { x = x.MulAdd1(base, d); } else { break; } } return x; } // ---------------------------------------------------------------------------- // Integer numbers export type Integer struct { sign bool; mant *Natural; } func (x *Integer) Add(y *Integer) *Integer { var z *Integer; if x.sign == y.sign { // x + y == x + y // (-x) + (-y) == -(x + y) z = &Integer{x.sign, x.mant.Add(y.mant)}; } else { // x + (-y) == x - y == -(y - x) // (-x) + y == y - x == -(x - y) if x.mant.Cmp(y.mant) >= 0 { z = &Integer{false, x.mant.Sub(y.mant)}; } else { z = &Integer{true, y.mant.Sub(x.mant)}; } } if x.sign { z.sign = !z.sign; } return z; } func (x *Integer) Sub(y *Integer) *Integer { var z *Integer; if x.sign != y.sign { // x - (-y) == x + y // (-x) - y == -(x + y) z = &Integer{x.sign, x.mant.Add(y.mant)}; } else { // x - y == x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if x.mant.Cmp(y.mant) >= 0 { z = &Integer{false, x.mant.Sub(y.mant)}; } else { z = &Integer{true, y.mant.Sub(x.mant)}; } } if x.sign { z.sign = !z.sign; } return z; } func (x *Integer) Mul(y *Integer) *Integer { // x * y == x * y // x * (-y) == -(x * y) // (-x) * y == -(x * y) // (-x) * (-y) == x * y return &Integer{x.sign != y.sign, x.mant.Mul(y.mant)}; } func (x *Integer) Div(y *Integer) *Integer { panic("UNIMPLEMENTED"); return nil; } func (x *Integer) Mod(y *Integer) *Integer { panic("UNIMPLEMENTED"); return nil; } func (x *Integer) Cmp(y *Integer) int { panic("UNIMPLEMENTED"); return 0; } func (x *Integer) String(base Word) string { if x.mant.IsZero() { return "0"; } var s string; if x.sign { s = "-"; } return s + x.mant.String(base); } export func IntFromString(s string, base Word) *Integer { // get sign, if any sign := false; if len(s) > 0 && (s[0] == '-' || s[0] == '+') { sign = s[0] == '-'; } return &Integer{sign, NatFromString(s[1 : len(s)], base)}; } // ---------------------------------------------------------------------------- // Rational numbers export type Rational struct { a, b *Integer; // a = numerator, b = denominator } func NewRat(a, b *Integer) *Rational { // TODO normalize the rational return &Rational{a, b}; } func (x *Rational) Add(y *Rational) *Rational { return NewRat((x.a.Mul(y.b)).Add(x.b.Mul(y.a)), x.b.Mul(y.b)); } func (x *Rational) Sub(y *Rational) *Rational { return NewRat((x.a.Mul(y.b)).Sub(x.b.Mul(y.a)), x.b.Mul(y.b)); } func (x *Rational) Mul(y *Rational) *Rational { return NewRat(x.a.Mul(y.a), x.b.Mul(y.b)); } func (x *Rational) Div(y *Rational) *Rational { return NewRat(x.a.Mul(y.b), x.b.Mul(y.a)); } func (x *Rational) Mod(y *Rational) *Rational { panic("UNIMPLEMENTED"); return nil; } func (x *Rational) Cmp(y *Rational) int { panic("UNIMPLEMENTED"); return 0; } export func RatFromString(s string) *Rational { panic("UNIMPLEMENTED"); return nil; }