// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Regular expression library. package regexp import ( "os"; "array"; ) export var debug = false; export var ErrInternal = os.NewError("internal error"); export var ErrUnmatchedLpar = os.NewError("unmatched '('"); export var ErrUnmatchedRpar = os.NewError("unmatched ')'"); export var ErrUnmatchedLbkt = os.NewError("unmatched '['"); export var ErrUnmatchedRbkt = os.NewError("unmatched ']'"); export var ErrBadRange = os.NewError("bad range in character class"); export var ErrExtraneousBackslash = os.NewError("extraneous backslash"); export var ErrBadClosure = os.NewError("repeated closure (**, ++, etc.)"); export var ErrBareClosure = os.NewError("closure applies to nothing"); export var ErrBadBackslash = os.NewError("illegal backslash escape"); // An instruction executed by the NFA type Inst interface { Type() int; // the type of this instruction: CHAR, ANY, etc. Next() Inst; // the instruction to execute after this one SetNext(i Inst); Index() int; SetIndex(i int); Print(); } // Fields and methods common to all instructions type Common struct { next Inst; index int; } func (c *Common) Next() Inst { return c.next } func (c *Common) SetNext(i Inst) { c.next = i } func (c *Common) Index() int { return c.index } func (c *Common) SetIndex(i int) { c.index = i } type RE struct { expr string; // the original expression ch chan<- *RE; // reply channel when we're done error *os.Error; // compile- or run-time error; nil if OK inst *array.Array; start Inst; nbra int; // number of brackets in expression, for subexpressions } const ( START // beginning of program = iota; END; // end of program: success BOT; // '^' beginning of text EOT; // '$' end of text CHAR; // 'a' regular character CHARCLASS; // [a-z] character class ANY; // '.' any character BRA; // '(' parenthesized expression EBRA; // ')'; end of '(' parenthesized expression ALT; // '|' alternation NOP; // do nothing; makes it easy to link without patching ) // --- START start of program type Start struct { Common } func (start *Start) Type() int { return START } func (start *Start) Print() { print("start") } // --- END end of program type End struct { Common } func (end *End) Type() int { return END } func (end *End) Print() { print("end") } // --- BOT beginning of text type Bot struct { Common } func (bot *Bot) Type() int { return BOT } func (bot *Bot) Print() { print("bot") } // --- EOT end of text type Eot struct { Common } func (eot *Eot) Type() int { return EOT } func (eot *Eot) Print() { print("eot") } // --- CHAR a regular character type Char struct { Common; char int; } func (char *Char) Type() int { return CHAR } func (char *Char) Print() { print("char ", string(char.char)) } func NewChar(char int) *Char { c := new(Char); c.char = char; return c; } // --- CHARCLASS [a-z] type CharClass struct { Common; char int; negate bool; // is character class negated? ([^a-z]) // array of int, stored pairwise: [a-z] is (a,z); x is (x,x): ranges *array.IntArray; } func (cclass *CharClass) Type() int { return CHARCLASS } func (cclass *CharClass) Print() { print("charclass"); if cclass.negate { print(" (negated)"); } for i := 0; i < cclass.ranges.Len(); i += 2 { l := cclass.ranges.At(i); r := cclass.ranges.At(i+1); if l == r { print(" [", string(l), "]"); } else { print(" [", string(l), "-", string(r), "]"); } } } func (cclass *CharClass) AddRange(a, b int) { // range is a through b inclusive cclass.ranges.Push(a); cclass.ranges.Push(b); } func (cclass *CharClass) Matches(c int) bool { for i := 0; i < cclass.ranges.Len(); i = i+2 { min := cclass.ranges.At(i); max := cclass.ranges.At(i+1); if min <= c && c <= max { return !cclass.negate } } return cclass.negate } func NewCharClass() *CharClass { c := new(CharClass); c.ranges = array.NewIntArray(0); return c; } // --- ANY any character type Any struct { Common } func (any *Any) Type() int { return ANY } func (any *Any) Print() { print("any") } // --- BRA parenthesized expression type Bra struct { Common; n int; // subexpression number } func (bra *Bra) Type() int { return BRA } func (bra *Bra) Print() { print("bra", bra.n); } // --- EBRA end of parenthesized expression type Ebra struct { Common; n int; // subexpression number } func (ebra *Ebra) Type() int { return EBRA } func (ebra *Ebra) Print() { print("ebra ", ebra.n); } // --- ALT alternation type Alt struct { Common; left Inst; // other branch } func (alt *Alt) Type() int { return ALT } func (alt *Alt) Print() { print("alt(", alt.left.Index(), ")"); } // --- NOP no operation type Nop struct { Common } func (nop *Nop) Type() int { return NOP } func (nop *Nop) Print() { print("nop") } // report error and exit compiling/executing goroutine func (re *RE) Error(err *os.Error) { re.error = err; re.ch <- re; sys.goexit(); } func (re *RE) Add(i Inst) Inst { i.SetIndex(re.inst.Len()); re.inst.Push(i); return i; } type Parser struct { re *RE; nlpar int; // number of unclosed lpars pos int; ch int; } const EOF = -1 func (p *Parser) c() int { return p.ch; } func (p *Parser) nextc() int { if p.pos >= len(p.re.expr) { p.ch = EOF } else { c, w := sys.stringtorune(p.re.expr, p.pos); p.ch = c; p.pos += w; } return p.ch; } func NewParser(re *RE) *Parser { parser := new(Parser); parser.re = re; parser.nextc(); // load p.ch return parser; } /* Grammar: regexp: concatenation { '|' concatenation } concatenation: { closure } closure: term [ '*' | '+' | '?' ] term: '^' '$' '.' character '[' [ '^' ] character-ranges ']' '(' regexp ')' */ func (p *Parser) Regexp() (start, end Inst) var NULL Inst func special(c int) bool { s := `\.+*?()|[]`; for i := 0; i < len(s); i++ { if c == int(s[i]) { return true } } return false } func specialcclass(c int) bool { s := `\-[]`; for i := 0; i < len(s); i++ { if c == int(s[i]) { return true } } return false } func (p *Parser) CharClass() Inst { cc := NewCharClass(); p.re.Add(cc); if p.c() == '^' { cc.negate = true; p.nextc(); } left := -1; for { switch c := p.c(); c { case ']', EOF: if left >= 0 { p.re.Error(ErrBadRange); } return cc; case '-': // do this before backslash processing p.re.Error(ErrBadRange); case '\\': c = p.nextc(); switch { case c == EOF: p.re.Error(ErrExtraneousBackslash); case c == 'n': c = '\n'; case specialcclass(c): // c is as delivered default: p.re.Error(ErrBadBackslash); } fallthrough; default: p.nextc(); switch { case left < 0: // first of pair if p.c() == '-' { // range p.nextc(); left = c; } else { // single char cc.AddRange(c, c); } case left <= c: // second of pair cc.AddRange(left, c); left = -1; default: p.re.Error(ErrBadRange); } } } return NULL } func (p *Parser) Term() (start, end Inst) { switch c := p.c(); c { case '|', EOF: return NULL, NULL; case '*', '+': p.re.Error(ErrBareClosure); case ')': if p.nlpar == 0 { p.re.Error(ErrUnmatchedRpar); } return NULL, NULL; case ']': p.re.Error(ErrUnmatchedRbkt); case '^': p.nextc(); start = p.re.Add(new(Bot)); return start, start; case '$': p.nextc(); start = p.re.Add(new(Eot)); return start, start; case '.': p.nextc(); start = p.re.Add(new(Any)); return start, start; case '[': p.nextc(); start = p.CharClass(); if p.c() != ']' { p.re.Error(ErrUnmatchedLbkt); } p.nextc(); return start, start; case '(': p.nextc(); p.nlpar++; p.re.nbra++; // increment first so first subexpr is \1 nbra := p.re.nbra; start, end = p.Regexp(); if p.c() != ')' { p.re.Error(ErrUnmatchedLpar); } p.nlpar--; p.nextc(); bra := new(Bra); p.re.Add(bra); ebra := new(Ebra); p.re.Add(ebra); bra.n = nbra; ebra.n = nbra; if start == NULL { if end == NULL { p.re.Error(ErrInternal) } start = ebra } else { end.SetNext(ebra); } bra.SetNext(start); return bra, ebra; case '\\': c = p.nextc(); switch { case c == EOF: p.re.Error(ErrExtraneousBackslash); case c == 'n': c = '\n'; case special(c): // c is as delivered default: p.re.Error(ErrBadBackslash); } fallthrough; default: p.nextc(); start = NewChar(c); p.re.Add(start); return start, start } panic("unreachable"); } func (p *Parser) Closure() (start, end Inst) { start, end = p.Term(); if start == NULL { return } switch p.c() { case '*': // (start,end)*: alt := new(Alt); p.re.Add(alt); end.SetNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start start = alt; // alt becomes new (start, end) end = alt; case '+': // (start,end)+: alt := new(Alt); p.re.Add(alt); end.SetNext(alt); // after end, do alt alt.left = start; // alternate brach: return to start end = alt; // start is unchanged; end is alt case '?': // (start,end)?: alt := new(Alt); p.re.Add(alt); nop := new(Nop); p.re.Add(nop); alt.left = start; // alternate branch is start alt.next = nop; // follow on to nop end.SetNext(nop); // after end, go to nop start = alt; // start is now alt end = nop; // end is nop pointed to by both branches default: return } switch p.nextc() { case '*', '+', '?': p.re.Error(ErrBadClosure); } return } func (p *Parser) Concatenation() (start, end Inst) { start, end = NULL, NULL; for { nstart, nend := p.Closure(); switch { case nstart == NULL: // end of this concatenation if start == NULL { // this is the empty string nop := p.re.Add(new(Nop)); return nop, nop; } return; case start == NULL: // this is first element of concatenation start, end = nstart, nend; default: end.SetNext(nstart); end = nend; } } panic("unreachable"); } func (p *Parser) Regexp() (start, end Inst) { start, end = p.Concatenation(); for { switch p.c() { default: return; case '|': p.nextc(); nstart, nend := p.Concatenation(); alt := new(Alt); p.re.Add(alt); alt.left = start; alt.next = nstart; nop := new(Nop); p.re.Add(nop); end.SetNext(nop); nend.SetNext(nop); start, end = alt, nop; } } panic("unreachable"); } func UnNop(i Inst) Inst { for i.Type() == NOP { i = i.Next() } return i } func (re *RE) EliminateNops() { for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(Inst); if inst.Type() == END { continue } inst.SetNext(UnNop(inst.Next())); if inst.Type() == ALT { alt := inst.(*Alt); alt.left = UnNop(alt.left); } } } func (re *RE) Dump() { for i := 0; i < re.inst.Len(); i++ { inst := re.inst.At(i).(Inst); print(inst.Index(), ": "); inst.Print(); if inst.Type() != END { print(" -> ", inst.Next().Index()) } print("\n"); } } func (re *RE) DoParse() { parser := NewParser(re); start := new(Start); re.Add(start); s, e := parser.Regexp(); start.next = s; re.start = start; e.SetNext(re.Add(new(End))); if debug { re.Dump(); println(); } re.EliminateNops(); if debug { re.Dump(); println(); } } func Compiler(str string, ch chan *RE) { re := new(RE); re.expr = str; re.inst = array.New(0); re.ch = ch; re.DoParse(); ch <- re; } // Public interface has only execute functionality export type Regexp interface { Execute(s string) []int; Match(s string) bool; MatchStrings(s string) []string; } // Compile in separate goroutine; wait for result export func Compile(str string) (regexp Regexp, error *os.Error) { ch := make(chan *RE); go Compiler(str, ch); re := <-ch; return re, re.error } type State struct { inst Inst; // next instruction to execute match []int; // pairs of bracketing submatches. 0th is start,end } // Append new state to to-do list. Leftmost-longest wins so avoid // adding a state that's already active. func AddState(s []State, inst Inst, match []int) []State { index := inst.Index(); l := len(s); pos := match[0]; // TODO: Once the state is a vector and we can do insert, have inputs always // go in order correctly and this "earlier" test is never necessary, for i := 0; i < l; i++ { if s[i].inst.Index() == index && // same instruction s[i].match[0] < pos { // earlier match already going; lefmost wins return s } } if l == cap(s) { s1 := make([]State, 2*l)[0:l]; for i := 0; i < l; i++ { s1[i] = s[i]; } s = s1; } s = s[0:l+1]; s[l].inst = inst; s[l].match = match; return s; } func (re *RE) DoExecute(str string, pos int) []int { var s [2][]State; // TODO: use a vector when State values (not ptrs) can be vector elements s[0] = make([]State, 10)[0:0]; s[1] = make([]State, 10)[0:0]; in, out := 0, 1; var final State; found := false; for pos <= len(str) { if !found { // prime the pump if we haven't seen a match yet match := make([]int, 2*(re.nbra+1)); for i := 0; i < len(match); i++ { match[i] = -1; // no match seen; catches cases like "a(b)?c" on "ac" } match[0] = pos; s[out] = AddState(s[out], re.start.Next(), match); } in, out = out, in; // old out state is new in state s[out] = s[out][0:0]; // clear out state if len(s[in]) == 0 { // machine has completed break; } charwidth := 1; c := EOF; if pos < len(str) { c, charwidth = sys.stringtorune(str, pos); } for i := 0; i < len(s[in]); i++ { state := s[in][i]; switch s[in][i].inst.Type() { case BOT: if pos == 0 { s[in] = AddState(s[in], state.inst.Next(), state.match) } case EOT: if pos == len(str) { s[in] = AddState(s[in], state.inst.Next(), state.match) } case CHAR: if c == state.inst.(*Char).char { s[out] = AddState(s[out], state.inst.Next(), state.match) } case CHARCLASS: if state.inst.(*CharClass).Matches(c) { s[out] = AddState(s[out], state.inst.Next(), state.match) } case ANY: if c != EOF { s[out] = AddState(s[out], state.inst.Next(), state.match) } case BRA: n := state.inst.(*Bra).n; state.match[2*n] = pos; s[in] = AddState(s[in], state.inst.Next(), state.match); case EBRA: n := state.inst.(*Ebra).n; state.match[2*n+1] = pos; s[in] = AddState(s[in], state.inst.Next(), state.match); case ALT: s[in] = AddState(s[in], state.inst.(*Alt).left, state.match); // give other branch a copy of this match vector s1 := make([]int, 2*(re.nbra+1)); for i := 0; i < len(s1); i++ { s1[i] = state.match[i] } s[in] = AddState(s[in], state.inst.Next(), s1); case END: // choose leftmost longest if !found || // first state.match[0] < final.match[0] || // leftmost (state.match[0] == final.match[0] && pos > final.match[1]) { // longest final = state; final.match[1] = pos; } found = true; default: state.inst.Print(); panic("unknown instruction in execute"); } } pos += charwidth; } return final.match; } func (re *RE) Execute(s string) []int { return re.DoExecute(s, 0) } func (re *RE) Match(s string) bool { return len(re.DoExecute(s, 0)) > 0 } func (re *RE) MatchStrings(s string) []string { r := re.DoExecute(s, 0); if r == nil { return nil } a := make([]string, len(r)/2); for i := 0; i < len(r); i += 2 { a[i/2] = s[r[i] : r[i+1]] } return a } // Exported function for simple boolean check. Anything more fancy // needs a call to Compile. export func Match(pattern string, s string) (matched bool, error *os.Error) { re, err := Compile(pattern); if err != nil { return false, err } return re.Match(s), nil }