// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVL argc+0(FP), AX MOVL argv+4(FP), BX MOVL SP, CX SUBL $128, CX // plenty of scratch ANDL $~15, CX MOVL CX, SP MOVL AX, 16(SP) MOVL BX, 24(SP) // create istack out of the given (operating system) stack. MOVL $runtime·g0(SB), DI LEAL (-64*1024+104)(SP), BX MOVL BX, g_stackguard0(DI) MOVL BX, g_stackguard1(DI) MOVL BX, (g_stack+stack_lo)(DI) MOVL SP, (g_stack+stack_hi)(DI) // find out information about the processor we're on MOVQ $0, AX CPUID CMPQ AX, $0 JE nocpuinfo MOVQ $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: needtls: LEAL runtime·m0+m_tls(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·m0+m_tls(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAL runtime·g0(SB), CX MOVL CX, g(BX) LEAL runtime·m0(SB), AX // save m->g0 = g0 MOVL CX, m_g0(AX) // save m0 to g0->m MOVL AX, g_m(CX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVL 24(SP), AX // copy argv MOVL AX, 4(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOVL $runtime·mainPC(SB), AX // entry MOVL $0, 0(SP) MOVL AX, 4(SP) CALL runtime·newproc(SB) // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 INT $3 RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-4 MOVL buf+0(FP), AX // gobuf LEAL buf+0(FP), BX // caller's SP MOVL BX, gobuf_sp(AX) MOVL 0(SP), BX // caller's PC MOVL BX, gobuf_pc(AX) MOVQ $0, gobuf_ret(AX) // Assert ctxt is zero. See func save. MOVL gobuf_ctxt(AX), BX TESTL BX, BX JZ 2(PC) CALL runtime·badctxt(SB) get_tls(CX) MOVL g(CX), BX MOVL BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $8-4 MOVL buf+0(FP), BX // gobuf // If ctxt is not nil, invoke deletion barrier before overwriting. MOVL gobuf_ctxt(BX), DX TESTL DX, DX JZ nilctxt LEAL gobuf_ctxt(BX), AX MOVL AX, 0(SP) MOVL $0, 4(SP) CALL runtime·writebarrierptr_prewrite(SB) MOVL buf+0(FP), BX nilctxt: MOVL gobuf_g(BX), DX MOVL 0(DX), CX // make sure g != nil get_tls(CX) MOVL DX, g(CX) MOVL gobuf_sp(BX), SP // restore SP MOVL gobuf_ctxt(BX), DX MOVQ gobuf_ret(BX), AX MOVL $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVL $0, gobuf_ctxt(BX) MOVL gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI get_tls(CX) MOVL g(CX), AX // save state in g->sched MOVL 0(SP), BX // caller's PC MOVL BX, (g_sched+gobuf_pc)(AX) LEAL fn+0(FP), BX // caller's SP MOVL BX, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVL g(CX), BX MOVL g_m(BX), BX MOVL m_g0(BX), SI CMPL SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVL $runtime·badmcall(SB), AX JMP AX MOVL SI, g(CX) // g = m->g0 MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHQ AX MOVL DI, DX MOVL 0(DI), DI CALL DI POPQ AX MOVL $runtime·badmcall2(SB), AX JMP AX RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI // DI = fn get_tls(CX) MOVL g(CX), AX // AX = g MOVL g_m(AX), BX // BX = m MOVL m_gsignal(BX), DX // DX = gsignal CMPL AX, DX JEQ noswitch MOVL m_g0(BX), DX // DX = g0 CMPL AX, DX JEQ noswitch MOVL m_curg(BX), R8 CMPL AX, R8 JEQ switch // Not g0, not curg. Must be gsignal, but that's not allowed. // Hide call from linker nosplit analysis. MOVL $runtime·badsystemstack(SB), AX CALL AX switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVL $runtime·systemstack_switch(SB), SI MOVL SI, (g_sched+gobuf_pc)(AX) MOVL SP, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to g0 MOVL DX, g(CX) MOVL (g_sched+gobuf_sp)(DX), SP // call target function MOVL DI, DX MOVL 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), BX MOVL m_curg(BX), AX MOVL AX, g(CX) MOVL (g_sched+gobuf_sp)(AX), SP MOVL $0, (g_sched+gobuf_sp)(AX) RET noswitch: // already on m stack, just call directly MOVL DI, DX MOVL 0(DI), DI CALL DI RET /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 get_tls(CX) MOVL g(CX), BX MOVL g_m(BX), BX // Cannot grow scheduler stack (m->g0). MOVL m_g0(BX), SI CMPL g(CX), SI JNE 3(PC) CALL runtime·badmorestackg0(SB) MOVL 0, AX // Cannot grow signal stack (m->gsignal). MOVL m_gsignal(BX), SI CMPL g(CX), SI JNE 3(PC) CALL runtime·badmorestackgsignal(SB) MOVL 0, AX // Called from f. // Set m->morebuf to f's caller. MOVL 8(SP), AX // f's caller's PC MOVL AX, (m_morebuf+gobuf_pc)(BX) LEAL 16(SP), AX // f's caller's SP MOVL AX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVL g(CX), SI MOVL SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVL 0(SP), AX // f's PC MOVL AX, (g_sched+gobuf_pc)(SI) MOVL SI, (g_sched+gobuf_g)(SI) LEAL 8(SP), AX // f's SP MOVL AX, (g_sched+gobuf_sp)(SI) // newstack will fill gobuf.ctxt. // Call newstack on m->g0's stack. MOVL m_g0(BX), BX MOVL BX, g(CX) MOVL (g_sched+gobuf_sp)(BX), SP PUSHQ DX // ctxt argument CALL runtime·newstack(SB) MOVL $0, 0x1003 // crash if newstack returns POPQ DX // keep balance check happy RET // morestack trampolines TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPL CX, $MAXSIZE; \ JA 3(PC); \ MOVL $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $0-20 MOVLQZX argsize+12(FP), CX DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVL $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-20; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVL argptr+8(FP), SI; \ MOVL argsize+12(FP), CX; \ MOVL SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVL f+4(FP), DX; \ MOVL (DX), AX; \ CALL AX; \ /* copy return values back */ \ MOVL argtype+0(FP), DX; \ MOVL argptr+8(FP), DI; \ MOVL argsize+12(FP), CX; \ MOVL retoffset+16(FP), BX; \ MOVL SP, SI; \ ADDL BX, DI; \ ADDL BX, SI; \ SUBL BX, CX; \ CALL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $16-0 MOVL DX, 0(SP) MOVL DI, 4(SP) MOVL SI, 8(SP) MOVL CX, 12(SP) CALL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 // Stores are already ordered on x86, so this is just a // compile barrier. RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8 MOVL fv+0(FP), DX MOVL argp+4(FP), BX LEAL -8(BX), SP // caller sp after CALL SUBL $5, (SP) // return to CALL again MOVL 0(DX), BX JMP BX // but first run the deferred function // func asmcgocall(fn, arg unsafe.Pointer) int32 // Not implemented. TEXT runtime·asmcgocall(SB),NOSPLIT,$0-12 MOVL 0, AX RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Not implemented. TEXT runtime·cgocallback(SB),NOSPLIT,$0-16 MOVL 0, AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // Not implemented. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$0-16 MOVL 0, AX RET // void setg(G*); set g. for use by needm. // Not implemented. TEXT runtime·setg(SB), NOSPLIT, $0-4 MOVL 0, AX RET // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVL g(CX), AX CMPL (g_stack+stack_hi)(AX), SP JHI 2(PC) MOVL 0, AX CMPL SP, (g_stack+stack_lo)(AX) JHI 2(PC) MOVL 0, AX RET TEXT runtime·memclrNoHeapPointers(SB),NOSPLIT,$0-8 MOVL ptr+0(FP), DI MOVL n+4(FP), CX MOVQ CX, BX ANDQ $3, BX SHRQ $2, CX MOVQ $0, AX CLD REP STOSL MOVQ BX, CX REP STOSB // Note: we zero only 4 bytes at a time so that the tail is at most // 3 bytes. That guarantees that we aren't zeroing pointers with STOSB. // See issue 13160. RET TEXT runtime·getcallerpc(SB),NOSPLIT,$8-12 MOVL argp+0(FP),AX // addr of first arg MOVL -8(AX),AX // get calling pc MOVL AX, ret+8(FP) RET // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-0 RDTSC SHLQ $32, DX ADDQ DX, AX MOVQ AX, ret+0(FP) RET // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$24-12 GO_ARGS NO_LOCAL_POINTERS MOVL p+0(FP), AX MOVL h+4(FP), BX MOVL 4(DX), CX MOVL AX, 0(SP) MOVL BX, 4(SP) MOVL CX, 8(SP) CALL runtime·memhash(SB) MOVL 16(SP), AX MOVL AX, ret+8(FP) RET // hash function using AES hardware instructions // For now, our one amd64p32 system (NaCl) does not // support using AES instructions, so have not bothered to // write the implementations. Can copy and adjust the ones // in asm_amd64.s when the time comes. TEXT runtime·aeshash(SB),NOSPLIT,$0-20 MOVL AX, ret+16(FP) RET TEXT runtime·aeshashstr(SB),NOSPLIT,$0-12 MOVL AX, ret+8(FP) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-12 MOVL AX, ret+8(FP) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-12 MOVL AX, ret+8(FP) RET // memequal(p, q unsafe.Pointer, size uintptr) bool TEXT runtime·memequal(SB),NOSPLIT,$0-17 MOVL a+0(FP), SI MOVL b+4(FP), DI CMPL SI, DI JEQ eq MOVL size+8(FP), BX CALL runtime·memeqbody(SB) MOVB AX, ret+16(FP) RET eq: MOVB $1, ret+16(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-9 MOVL a+0(FP), SI MOVL b+4(FP), DI CMPL SI, DI JEQ eq MOVL 4(DX), BX // compiler stores size at offset 4 in the closure CALL runtime·memeqbody(SB) MOVB AX, ret+8(FP) RET eq: MOVB $1, ret+8(FP) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-17 MOVL s1_base+0(FP), SI MOVL s2_base+8(FP), DI CMPL SI, DI JEQ same MOVL s1_len+4(FP), BX CALL runtime·memeqbody(SB) MOVB AX, ret+16(FP) RET same: MOVB $1, ret+16(FP) RET // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 XORQ AX, AX CMPQ BX, $8 JB small // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop RET // remaining 0-8 bytes leftover: ADDQ BX, SI ADDQ BX, DI MOVQ -8(SI), CX MOVQ -8(DI), DX CMPQ CX, DX SETEQ AX RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ BX, DX ADDQ SI, DX MOVQ -8(DX), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ BX, DX ADDQ DI, DX MOVQ -8(DX), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-20 MOVL s1_base+0(FP), SI MOVL s1_len+4(FP), BX MOVL s2_base+8(FP), DI MOVL s2_len+12(FP), DX CALL runtime·cmpbody(SB) MOVL AX, ret+16(FP) RET TEXT bytes·Compare(SB),NOSPLIT,$0-28 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+12(FP), DI MOVL s2+16(FP), DX CALL runtime·cmpbody(SB) MOVL AX, res+24(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPQ SI, DI JEQ allsame CMPQ BX, DX MOVQ DX, R8 CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare CMPQ R8, $8 JB small loop: CMPQ R8, $16 JBE _0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, R8 JMP loop // AX = bit mask of differences diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX ADDQ BX, SI MOVB (SI), CX ADDQ BX, DI CMPB CX, (DI) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 RET // 0 through 16 bytes left, alen>=8, blen>=8 _0through16: CMPQ R8, $8 JBE _0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE diff8 _0through8: ADDQ R8, SI ADDQ R8, DI MOVQ -8(SI), AX MOVQ -8(DI), CX CMPQ AX, CX JEQ allsame // AX and CX contain parts of a and b that differ. diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 RET // 0-7 bytes in common small: LEAQ (R8*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA si_high MOVQ (SI), SI JMP si_finish si_high: ADDQ R8, SI MOVQ -8(SI), SI SHRQ CX, SI si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: ADDQ R8, DI MOVQ -8(DI), DI SHRQ CX, DI di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 RET allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-20 MOVL s+0(FP), SI MOVL s_len+4(FP), BX MOVB c+12(FP), AL CALL runtime·indexbytebody(SB) MOVL AX, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-20 MOVL s+0(FP), SI MOVL s_len+4(FP), BX MOVB c+8(FP), AL CALL runtime·indexbytebody(SB) MOVL AX, ret+16(FP) RET // input: // SI: data // BX: data len // AL: byte sought // output: // AX TEXT runtime·indexbytebody(SB),NOSPLIT,$0 MOVL SI, DI CMPL BX, $16 JLT small // round up to first 16-byte boundary TESTL $15, SI JZ aligned MOVL SI, CX ANDL $~15, CX ADDL $16, CX // search the beginning SUBL SI, CX REPN; SCASB JZ success // DI is 16-byte aligned; get ready to search using SSE instructions aligned: // round down to last 16-byte boundary MOVL BX, R11 ADDL SI, R11 ANDL $~15, R11 // shuffle X0 around so that each byte contains c MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 JMP condition sse: // move the next 16-byte chunk of the buffer into X1 MOVO (DI), X1 // compare bytes in X0 to X1 PCMPEQB X0, X1 // take the top bit of each byte in X1 and put the result in DX PMOVMSKB X1, DX TESTL DX, DX JNZ ssesuccess ADDL $16, DI condition: CMPL DI, R11 JLT sse // search the end MOVL SI, CX ADDL BX, CX SUBL R11, CX // if CX == 0, the zero flag will be set and we'll end up // returning a false success JZ failure REPN; SCASB JZ success failure: MOVL $-1, AX RET // handle for lengths < 16 small: MOVL BX, CX REPN; SCASB JZ success MOVL $-1, AX RET // we've found the chunk containing the byte // now just figure out which specific byte it is ssesuccess: // get the index of the least significant set bit BSFW DX, DX SUBL SI, DI ADDL DI, DX MOVL DX, AX RET success: SUBL SI, DI SUBL $1, DI MOVL DI, AX RET TEXT bytes·Equal(SB),NOSPLIT,$0-25 MOVL a_len+4(FP), BX MOVL b_len+16(FP), CX XORL AX, AX CMPL BX, CX JNE eqret MOVL a+0(FP), SI MOVL b+12(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+24(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$0-0 BYTE $0x90 // NOP CALL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x90 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT0 (AX) RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT1 (AX) RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT2 (AX) RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHNTA (AX) RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVB $1, ret+0(FP) RET