// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "bytes" "debug/elf" "debug/macho" "debug/pe" "fmt" "go/ast" "go/printer" "go/token" "os" "strings" ) // writeDefs creates output files to be compiled by 6g, 6c, and gcc. // (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.) func (p *Package) writeDefs() { // The path for the shared object is slash-free so that ELF loaders // will treat it as a relative path. We rewrite slashes to underscores. sopath := "cgo_" + strings.Map(slashToUnderscore, p.PackagePath) soprefix := "" if os.Getenv("GOOS") == "darwin" { // OS X requires its own prefix for a relative path soprefix = "@rpath/" } fgo2 := creat("_cgo_gotypes.go") fc := creat("_cgo_defun.c") fm := creat("_cgo_main.c") // Write C main file for using gcc to resolve imports. fmt.Fprintf(fm, "int main() { return 0; }\n") fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*, int), void *a, int c) { }\n") fmt.Fprintf(fm, "void _cgo_allocate(void *a, int c) { }\n") fmt.Fprintf(fm, "void _cgo_panic(void *a, int c) { }\n") // Write second Go output: definitions of _C_xxx. // In a separate file so that the import of "unsafe" does not // pollute the original file. fmt.Fprintf(fgo2, "// Created by cgo - DO NOT EDIT\n\n") fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName) fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") fmt.Fprintf(fgo2, "import \"os\"\n\n") fmt.Fprintf(fgo2, "import _ \"runtime/cgo\"\n\n") fmt.Fprintf(fgo2, "type _ unsafe.Pointer\n\n") fmt.Fprintf(fgo2, "func _Cerrno(dst *os.Error, x int) { *dst = os.Errno(x) }\n") for name, def := range typedef { fmt.Fprintf(fgo2, "type %s ", name) printer.Fprint(fgo2, fset, def) fmt.Fprintf(fgo2, "\n") } fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n") fmt.Fprintf(fc, cProlog) var cVars []string for _, n := range p.Name { if n.Kind != "var" { continue } cVars = append(cVars, n.C) fmt.Fprintf(fm, "extern char %s[];\n", n.C) fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C) fmt.Fprintf(fc, "extern byte *%s;\n", n.C) fmt.Fprintf(fc, "void *·%s = &%s;\n", n.Mangle, n.C) fmt.Fprintf(fc, "\n") fmt.Fprintf(fgo2, "var %s ", n.Mangle) printer.Fprint(fgo2, fset, &ast.StarExpr{X: n.Type.Go}) fmt.Fprintf(fgo2, "\n") } fmt.Fprintf(fc, "\n") for _, n := range p.Name { if n.Const != "" { fmt.Fprintf(fgo2, "const _Cconst_%s = %s\n", n.Go, n.Const) } } fmt.Fprintf(fgo2, "\n") for _, n := range p.Name { if n.FuncType != nil { p.writeDefsFunc(fc, fgo2, n, soprefix, sopath) } } p.writeExports(fgo2, fc, fm) fgo2.Close() fc.Close() } func dynimport(obj string) (syms, imports []string) { var f interface { ImportedLibraries() ([]string, os.Error) ImportedSymbols() ([]string, os.Error) } var isMacho bool var err1, err2, err3 os.Error if f, err1 = elf.Open(obj); err1 != nil { if f, err2 = pe.Open(obj); err2 != nil { if f, err3 = macho.Open(obj); err3 != nil { fatal("cannot parse %s as ELF (%v) or PE (%v) or Mach-O (%v)", obj, err1, err2, err3) } isMacho = true } } var err os.Error syms, err = f.ImportedSymbols() if err != nil { fatal("cannot load dynamic symbols: %v", err) } if isMacho { // remove leading _ that OS X insists on for i, s := range syms { if len(s) >= 2 && s[0] == '_' { syms[i] = s[1:] } } } imports, err = f.ImportedLibraries() if err != nil { fatal("cannot load dynamic imports: %v", err) } return } // Construct a gcc struct matching the 6c argument frame. // Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. // These assumptions are checked by the gccProlog. // Also assumes that 6c convention is to word-align the // input and output parameters. func (p *Package) structType(n *Name) (string, int64) { var buf bytes.Buffer fmt.Fprint(&buf, "struct {\n") off := int64(0) for i, t := range n.FuncType.Params { if off%t.Align != 0 { pad := t.Align - off%t.Align fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } fmt.Fprintf(&buf, "\t\t%s p%d;\n", t.C, i) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } if t := n.FuncType.Result; t != nil { if off%t.Align != 0 { pad := t.Align - off%t.Align fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } qual := "" if t.C[len(t.C)-1] == '*' { qual = "const " } fmt.Fprintf(&buf, "\t\t%s%s r;\n", qual, t.C) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) off += pad } if n.AddError { fmt.Fprint(&buf, "\t\tvoid *e[2]; /* os.Error */\n") off += 2 * p.PtrSize } if off == 0 { fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct off++ } fmt.Fprintf(&buf, "\t}") return buf.String(), off } func (p *Package) writeDefsFunc(fc, fgo2 *os.File, n *Name, soprefix, sopath string) { name := n.Go gtype := n.FuncType.Go if n.AddError { // Add "os.Error" to return type list. // Type list is known to be 0 or 1 element - it's a C function. err := &ast.Field{Type: ast.NewIdent("os.Error")} l := gtype.Results.List if len(l) == 0 { l = []*ast.Field{err} } else { l = []*ast.Field{l[0], err} } t := new(ast.FuncType) *t = *gtype t.Results = &ast.FieldList{List: l} gtype = t } // Go func declaration. d := &ast.FuncDecl{ Name: ast.NewIdent(n.Mangle), Type: gtype, } printer.Fprint(fgo2, fset, d) fmt.Fprintf(fgo2, "\n") if name == "CString" || name == "GoString" || name == "GoStringN" { // The builtins are already defined in the C prolog. return } var argSize int64 _, argSize = p.structType(n) // C wrapper calls into gcc, passing a pointer to the argument frame. fmt.Fprintf(fc, "void _cgo%s%s(void*);\n", cPrefix, n.Mangle) fmt.Fprintf(fc, "\n") fmt.Fprintf(fc, "void\n") fmt.Fprintf(fc, "·%s(struct{uint8 x[%d];}p)\n", n.Mangle, argSize) fmt.Fprintf(fc, "{\n") fmt.Fprintf(fc, "\truntime·cgocall(_cgo%s%s, &p);\n", cPrefix, n.Mangle) if n.AddError { // gcc leaves errno in first word of interface at end of p. // check whether it is zero; if so, turn interface into nil. // if not, turn interface into errno. // Go init function initializes ·_Cerrno with an os.Errno // for us to copy. fmt.Fprintln(fc, ` { int32 e; void **v; v = (void**)(&p+1) - 2; /* v = final two void* of p */ e = *(int32*)v; v[0] = (void*)0xdeadbeef; v[1] = (void*)0xdeadbeef; if(e == 0) { /* nil interface */ v[0] = 0; v[1] = 0; } else { ·_Cerrno(v, e); /* fill in v as os.Error for errno e */ } }`) } fmt.Fprintf(fc, "}\n") fmt.Fprintf(fc, "\n") } // writeOutput creates stubs for a specific source file to be compiled by 6g // (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.) func (p *Package) writeOutput(f *File, srcfile string) { base := srcfile if strings.HasSuffix(base, ".go") { base = base[0 : len(base)-3] } base = strings.Map(slashToUnderscore, base) fgo1 := creat(base + ".cgo1.go") fgcc := creat(base + ".cgo2.c") p.GoFiles = append(p.GoFiles, base+".cgo1.go") p.GccFiles = append(p.GccFiles, base+".cgo2.c") // Write Go output: Go input with rewrites of C.xxx to _C_xxx. fmt.Fprintf(fgo1, "// Created by cgo - DO NOT EDIT\n\n") fmt.Fprintf(fgo1, "//line %s:1\n", srcfile) printer.Fprint(fgo1, fset, f.AST) // While we process the vars and funcs, also write 6c and gcc output. // Gcc output starts with the preamble. fmt.Fprintf(fgcc, "%s\n", f.Preamble) fmt.Fprintf(fgcc, "%s\n", gccProlog) for _, n := range f.Name { if n.FuncType != nil { p.writeOutputFunc(fgcc, n) } } fgo1.Close() fgcc.Close() } func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) { name := n.Mangle if name == "_Cfunc_CString" || name == "_Cfunc_GoString" || name == "_Cfunc_GoStringN" || p.Written[name] { // The builtins are already defined in the C prolog, and we don't // want to duplicate function definitions we've already done. return } p.Written[name] = true ctype, _ := p.structType(n) // Gcc wrapper unpacks the C argument struct // and calls the actual C function. fmt.Fprintf(fgcc, "void\n") fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle) fmt.Fprintf(fgcc, "{\n") if n.AddError { fmt.Fprintf(fgcc, "\tint e;\n") // assuming 32 bit (see comment above structType) fmt.Fprintf(fgcc, "\terrno = 0;\n") } fmt.Fprintf(fgcc, "\t%s *a = v;\n", ctype) fmt.Fprintf(fgcc, "\t") if n.FuncType.Result != nil { fmt.Fprintf(fgcc, "a->r = ") } fmt.Fprintf(fgcc, "%s(", n.C) for i := range n.FuncType.Params { if i > 0 { fmt.Fprintf(fgcc, ", ") } fmt.Fprintf(fgcc, "a->p%d", i) } fmt.Fprintf(fgcc, ");\n") if n.AddError { fmt.Fprintf(fgcc, "\t*(int*)(a->e) = errno;\n") } fmt.Fprintf(fgcc, "}\n") fmt.Fprintf(fgcc, "\n") } // Write out the various stubs we need to support functions exported // from Go so that they are callable from C. func (p *Package) writeExports(fgo2, fc, fm *os.File) { fgcc := creat("_cgo_export.c") fgcch := creat("_cgo_export.h") fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n") fmt.Fprintf(fgcch, "%s\n", gccExportHeaderProlog) fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n") fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") for _, exp := range p.ExpFunc { fn := exp.Func // Construct a gcc struct matching the 6c argument and // result frame. ctype := "struct {\n" off := int64(0) npad := 0 if fn.Recv != nil { t := p.cgoType(fn.Recv.List[0].Type) ctype += fmt.Sprintf("\t\t%s recv;\n", t.C) off += t.Size } fntype := fn.Type forFieldList(fntype.Params, func(i int, atype ast.Expr) { t := p.cgoType(atype) if off%t.Align != 0 { pad := t.Align - off%t.Align ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } ctype += fmt.Sprintf("\t\t%s p%d;\n", t.C, i) off += t.Size }) if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } forFieldList(fntype.Results, func(i int, atype ast.Expr) { t := p.cgoType(atype) if off%t.Align != 0 { pad := t.Align - off%t.Align ctype += fmt.Sprintf("\t\tchar __pad%d[%d]\n", npad, pad) off += pad npad++ } ctype += fmt.Sprintf("\t\t%s r%d;\n", t.C, i) off += t.Size }) if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if ctype == "struct {\n" { ctype += "\t\tchar unused;\n" // avoid empty struct off++ } ctype += "\t}" // Get the return type of the wrapper function // compiled by gcc. gccResult := "" if fntype.Results == nil || len(fntype.Results.List) == 0 { gccResult = "void" } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { gccResult = p.cgoType(fntype.Results.List[0].Type).C } else { fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) forFieldList(fntype.Results, func(i int, atype ast.Expr) { fmt.Fprintf(fgcch, "\t%s r%d;\n", p.cgoType(atype).C, i) }) fmt.Fprintf(fgcch, "};\n") gccResult = "struct " + exp.ExpName + "_return" } // Build the wrapper function compiled by gcc. s := fmt.Sprintf("%s %s(", gccResult, exp.ExpName) if fn.Recv != nil { s += p.cgoType(fn.Recv.List[0].Type).C s += " recv" } forFieldList(fntype.Params, func(i int, atype ast.Expr) { if i > 0 || fn.Recv != nil { s += ", " } s += fmt.Sprintf("%s p%d", p.cgoType(atype).C, i) }) s += ")" fmt.Fprintf(fgcch, "\nextern %s;\n", s) fmt.Fprintf(fgcc, "extern _cgoexp%s_%s(void *, int);\n", cPrefix, exp.ExpName) fmt.Fprintf(fgcc, "\n%s\n", s) fmt.Fprintf(fgcc, "{\n") fmt.Fprintf(fgcc, "\t%s a;\n", ctype) if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) } if fn.Recv != nil { fmt.Fprintf(fgcc, "\ta.recv = recv;\n") } forFieldList(fntype.Params, func(i int, atype ast.Expr) { fmt.Fprintf(fgcc, "\ta.p%d = p%d;\n", i, i) }) fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &a, (int) sizeof a);\n", cPrefix, exp.ExpName) if gccResult != "void" { if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { fmt.Fprintf(fgcc, "\treturn a.r0;\n") } else { forFieldList(fntype.Results, func(i int, atype ast.Expr) { fmt.Fprintf(fgcc, "\tr.r%d = a.r%d;\n", i, i) }) fmt.Fprintf(fgcc, "\treturn r;\n") } } fmt.Fprintf(fgcc, "}\n") // Build the wrapper function compiled by 6c/8c goname := exp.Func.Name.Name if fn.Recv != nil { goname = "_cgoexpwrap" + cPrefix + "_" + fn.Recv.List[0].Names[0].Name + "_" + goname } fmt.Fprintf(fc, "extern void ·%s();\n", goname) fmt.Fprintf(fc, "\nvoid\n") fmt.Fprintf(fc, "_cgoexp%s_%s(void *a, int32 n)\n", cPrefix, exp.ExpName) fmt.Fprintf(fc, "{\n") fmt.Fprintf(fc, "\truntime·cgocallback(·%s, a, n);\n", goname) fmt.Fprintf(fc, "}\n") fmt.Fprintf(fm, "int _cgoexp%s_%s;\n", cPrefix, exp.ExpName) // Calling a function with a receiver from C requires // a Go wrapper function. if fn.Recv != nil { fmt.Fprintf(fgo2, "func %s(recv ", goname) printer.Fprint(fgo2, fset, fn.Recv.List[0].Type) forFieldList(fntype.Params, func(i int, atype ast.Expr) { fmt.Fprintf(fgo2, ", p%d ", i) printer.Fprint(fgo2, fset, atype) }) fmt.Fprintf(fgo2, ")") if gccResult != "void" { fmt.Fprint(fgo2, " (") forFieldList(fntype.Results, func(i int, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } printer.Fprint(fgo2, fset, atype) }) fmt.Fprint(fgo2, ")") } fmt.Fprint(fgo2, " {\n") fmt.Fprint(fgo2, "\t") if gccResult != "void" { fmt.Fprint(fgo2, "return ") } fmt.Fprintf(fgo2, "recv.%s(", exp.Func.Name) forFieldList(fntype.Params, func(i int, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } fmt.Fprintf(fgo2, "p%d", i) }) fmt.Fprint(fgo2, ")\n") fmt.Fprint(fgo2, "}\n") } } } // Call a function for each entry in an ast.FieldList, passing the // index into the list and the type. func forFieldList(fl *ast.FieldList, fn func(int, ast.Expr)) { if fl == nil { return } i := 0 for _, r := range fl.List { if r.Names == nil { fn(i, r.Type) i++ } else { for _ = range r.Names { fn(i, r.Type) i++ } } } } // Map predeclared Go types to Type. var goTypes = map[string]*Type{ "int": &Type{Size: 4, Align: 4, C: "int"}, "uint": &Type{Size: 4, Align: 4, C: "uint"}, "int8": &Type{Size: 1, Align: 1, C: "schar"}, "uint8": &Type{Size: 1, Align: 1, C: "uchar"}, "int16": &Type{Size: 2, Align: 2, C: "short"}, "uint16": &Type{Size: 2, Align: 2, C: "ushort"}, "int32": &Type{Size: 4, Align: 4, C: "int"}, "uint32": &Type{Size: 4, Align: 4, C: "uint"}, "int64": &Type{Size: 8, Align: 8, C: "int64"}, "uint64": &Type{Size: 8, Align: 8, C: "uint64"}, "float": &Type{Size: 4, Align: 4, C: "float"}, "float32": &Type{Size: 4, Align: 4, C: "float"}, "float64": &Type{Size: 8, Align: 8, C: "double"}, "complex": &Type{Size: 8, Align: 8, C: "__complex float"}, "complex64": &Type{Size: 8, Align: 8, C: "__complex float"}, "complex128": &Type{Size: 16, Align: 16, C: "__complex double"}, } // Map an ast type to a Type. func (p *Package) cgoType(e ast.Expr) *Type { switch t := e.(type) { case *ast.StarExpr: x := p.cgoType(t.X) return &Type{Size: p.PtrSize, Align: p.PtrSize, C: x.C + "*"} case *ast.ArrayType: if t.Len == nil { return &Type{Size: p.PtrSize + 8, Align: p.PtrSize, C: "GoSlice"} } case *ast.StructType: // TODO case *ast.FuncType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "void*"} case *ast.InterfaceType: return &Type{Size: 3 * p.PtrSize, Align: p.PtrSize, C: "GoInterface"} case *ast.MapType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "GoMap"} case *ast.ChanType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "GoChan"} case *ast.Ident: // Look up the type in the top level declarations. // TODO: Handle types defined within a function. for _, d := range p.Decl { gd, ok := d.(*ast.GenDecl) if !ok || gd.Tok != token.TYPE { continue } for _, spec := range gd.Specs { ts, ok := spec.(*ast.TypeSpec) if !ok { continue } if ts.Name.Name == t.Name { return p.cgoType(ts.Type) } } } for name, def := range typedef { if name == t.Name { return p.cgoType(def) } } if t.Name == "uintptr" { return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "uintptr"} } if t.Name == "string" { return &Type{Size: p.PtrSize + 4, Align: p.PtrSize, C: "GoString"} } if r, ok := goTypes[t.Name]; ok { if r.Align > p.PtrSize { r.Align = p.PtrSize } return r } case *ast.SelectorExpr: id, ok := t.X.(*ast.Ident) if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" { return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "void*"} } } error(e.Pos(), "unrecognized Go type %T", e) return &Type{Size: 4, Align: 4, C: "int"} } const gccProlog = ` // Usual nonsense: if x and y are not equal, the type will be invalid // (have a negative array count) and an inscrutable error will come // out of the compiler and hopefully mention "name". #define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2+1]; // Check at compile time that the sizes we use match our expectations. #define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), n, _cgo_sizeof_##t##_is_not_##n) __cgo_size_assert(char, 1) __cgo_size_assert(short, 2) __cgo_size_assert(int, 4) typedef long long __cgo_long_long; __cgo_size_assert(__cgo_long_long, 8) __cgo_size_assert(float, 4) __cgo_size_assert(double, 8) #include #include ` const builtinProlog = ` typedef struct { char *p; int n; } _GoString_; _GoString_ GoString(char *p); _GoString_ GoStringN(char *p, int l); char *CString(_GoString_); ` const cProlog = ` #include "runtime.h" #include "cgocall.h" void ·_Cerrno(void*, int32); void ·_Cfunc_GoString(int8 *p, String s) { s = runtime·gostring((byte*)p); FLUSH(&s); } void ·_Cfunc_GoStringN(int8 *p, int32 l, String s) { s = runtime·gostringn((byte*)p, l); FLUSH(&s); } void ·_Cfunc_CString(String s, int8 *p) { p = runtime·cmalloc(s.len+1); runtime·mcpy((byte*)p, s.str, s.len); p[s.len] = 0; FLUSH(&p); } ` const gccExportHeaderProlog = ` typedef unsigned int uint; typedef signed char schar; typedef unsigned char uchar; typedef unsigned short ushort; typedef long long int64; typedef unsigned long long uint64; typedef __SIZE_TYPE__ uintptr; typedef struct { char *p; int n; } GoString; typedef void *GoMap; typedef void *GoChan; typedef struct { void *t; void *v; } GoInterface; `