// Use of this source file is governed by a BSD-style // license that can be found in the LICENSE file.` #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "stack.h" extern SigTab runtime·sigtab[]; extern int32 runtime·sys_umtx_op(uint32*, int32, uint32, void*, void*); // From FreeBSD's #define CTL_HW 6 #define HW_NCPU 3 static int32 getncpu(void) { uint32 mib[2]; uint32 out; int32 ret; uintptr nout; // Fetch hw.ncpu via sysctl. mib[0] = CTL_HW; mib[1] = HW_NCPU; nout = sizeof out; out = 0; ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); if(ret >= 0) return out; else return 1; } // FreeBSD's umtx_op syscall is effectively the same as Linux's futex, and // thus the code is largely similar. See linux/thread.c and lock_futex.c for comments. void runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) { int32 ret; Timespec ts, *tsp; if(ns < 0) tsp = nil; else { ts.tv_sec = ns / 1000000000LL; ts.tv_nsec = ns % 1000000000LL; tsp = &ts; } ret = runtime·sys_umtx_op(addr, UMTX_OP_WAIT, val, nil, tsp); if(ret >= 0 || ret == -EINTR) return; runtime·printf("umtx_wait addr=%p val=%d ret=%d\n", addr, val, ret); *(int32*)0x1005 = 0x1005; } void runtime·futexwakeup(uint32 *addr, uint32 cnt) { int32 ret; ret = runtime·sys_umtx_op(addr, UMTX_OP_WAKE, cnt, nil, nil); if(ret >= 0) return; runtime·printf("umtx_wake addr=%p ret=%d\n", addr, ret); *(int32*)0x1006 = 0x1006; } void runtime·thr_start(void*); void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { ThrParam param; USED(fn); // thr_start assumes fn == mstart USED(g); // thr_start assumes g == m->g0 if(0){ runtime·printf("newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", stk, m, g, fn, m->id, m->tls[0], &m); } runtime·memclr((byte*)¶m, sizeof param); param.start_func = runtime·thr_start; param.arg = m; param.stack_base = (int8*)g->stackbase; param.stack_size = (byte*)stk - (byte*)g->stackbase; param.child_tid = (intptr*)&m->procid; param.parent_tid = nil; param.tls_base = (int8*)&m->tls[0]; param.tls_size = sizeof m->tls; m->tls[0] = m->id; // so 386 asm can find it runtime·thr_new(¶m, sizeof param); } void runtime·osinit(void) { runtime·ncpu = getncpu(); } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). void runtime·minit(void) { // Initialize signal handling m->gsignal = runtime·malg(32*1024); runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); } // TODO: fill this in properly. void runtime·osyield(void) { }