// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Frames may be used to get function/file/line information for a // slice of PC values returned by Callers. type Frames struct { // callers is a slice of PCs that have not yet been expanded. callers []uintptr // stackExpander expands callers into a sequence of Frames, // tracking the necessary state across PCs. stackExpander stackExpander } // Frame is the information returned by Frames for each call frame. type Frame struct { // PC is the program counter for the location in this frame. // For a frame that calls another frame, this will be the // program counter of a call instruction. Because of inlining, // multiple frames may have the same PC value, but different // symbolic information. PC uintptr // Func is the Func value of this call frame. This may be nil // for non-Go code or fully inlined functions. Func *Func // Function is the package path-qualified function name of // this call frame. If non-empty, this string uniquely // identifies a single function in the program. // This may be the empty string if not known. // If Func is not nil then Function == Func.Name(). Function string // File and Line are the file name and line number of the // location in this frame. For non-leaf frames, this will be // the location of a call. These may be the empty string and // zero, respectively, if not known. File string Line int // Entry point program counter for the function; may be zero // if not known. If Func is not nil then Entry == // Func.Entry(). Entry uintptr } // stackExpander expands a call stack of PCs into a sequence of // Frames. It tracks state across PCs necessary to perform this // expansion. // // This is the core of the Frames implementation, but is a separate // internal API to make it possible to use within the runtime without // heap-allocating the PC slice. The only difference with the public // Frames API is that the caller is responsible for threading the PC // slice between expansion steps in this API. If escape analysis were // smarter, we may not need this (though it may have to be a lot // smarter). type stackExpander struct { // pcExpander expands the current PC into a sequence of Frames. pcExpander pcExpander // If previous caller in iteration was a panic, then the next // PC in the call stack is the address of the faulting // instruction instead of the return address of the call. wasPanic bool // skip > 0 indicates that skip frames in the expansion of the // first PC should be skipped over and callers[1] should also // be skipped. skip int } // CallersFrames takes a slice of PC values returned by Callers and // prepares to return function/file/line information. // Do not change the slice until you are done with the Frames. func CallersFrames(callers []uintptr) *Frames { ci := &Frames{} ci.callers = ci.stackExpander.init(callers) return ci } func (se *stackExpander) init(callers []uintptr) []uintptr { if len(callers) >= 1 { pc := callers[0] s := pc - skipPC if s >= 0 && s < sizeofSkipFunction { // Ignore skip frame callers[0] since this means the caller trimmed the PC slice. return callers[1:] } } if len(callers) >= 2 { pc := callers[1] s := pc - skipPC if s > 0 && s < sizeofSkipFunction { // Skip the first s inlined frames when we expand the first PC. se.skip = int(s) } } return callers } // Next returns frame information for the next caller. // If more is false, there are no more callers (the Frame value is valid). func (ci *Frames) Next() (frame Frame, more bool) { ci.callers, frame, more = ci.stackExpander.next(ci.callers) return } func (se *stackExpander) next(callers []uintptr) (ncallers []uintptr, frame Frame, more bool) { ncallers = callers if !se.pcExpander.more { // Expand the next PC. if len(ncallers) == 0 { se.wasPanic = false return ncallers, Frame{}, false } se.pcExpander.init(ncallers[0], se.wasPanic) ncallers = ncallers[1:] se.wasPanic = se.pcExpander.funcInfo.valid() && se.pcExpander.funcInfo.entry == sigpanicPC if se.skip > 0 { for ; se.skip > 0; se.skip-- { se.pcExpander.next() } se.skip = 0 // Drop skipPleaseUseCallersFrames. ncallers = ncallers[1:] } if !se.pcExpander.more { // No symbolic information for this PC. // However, we return at least one frame for // every PC, so return an invalid frame. return ncallers, Frame{}, len(ncallers) > 0 } } frame = se.pcExpander.next() return ncallers, frame, se.pcExpander.more || len(ncallers) > 0 } // A pcExpander expands a single PC into a sequence of Frames. type pcExpander struct { // more indicates that the next call to next will return a // valid frame. more bool // pc is the pc being expanded. pc uintptr // frames is a pre-expanded set of Frames to return from the // iterator. If this is set, then this is everything that will // be returned from the iterator. frames []Frame // funcInfo is the funcInfo of the function containing pc. funcInfo funcInfo // inlTree is the inlining tree of the function containing pc. inlTree *[1 << 20]inlinedCall // file and line are the file name and line number of the next // frame. file string line int32 // inlIndex is the inlining index of the next frame, or -1 if // the next frame is an outermost frame. inlIndex int32 } // init initializes this pcExpander to expand pc. It sets ex.more if // pc expands to any Frames. // // A pcExpander can be reused by calling init again. // // If pc was a "call" to sigpanic, panicCall should be true. In this // case, pc is treated as the address of a faulting instruction // instead of the return address of a call. func (ex *pcExpander) init(pc uintptr, panicCall bool) { ex.more = false ex.funcInfo = findfunc(pc) if !ex.funcInfo.valid() { if cgoSymbolizer != nil { // Pre-expand cgo frames. We could do this // incrementally, too, but there's no way to // avoid allocation in this case anyway. ex.frames = expandCgoFrames(pc) ex.more = len(ex.frames) > 0 } return } ex.more = true entry := ex.funcInfo.entry ex.pc = pc if ex.pc > entry && !panicCall { ex.pc-- } // file and line are the innermost position at pc. ex.file, ex.line = funcline1(ex.funcInfo, ex.pc, false) // Get inlining tree at pc inldata := funcdata(ex.funcInfo, _FUNCDATA_InlTree) if inldata != nil { ex.inlTree = (*[1 << 20]inlinedCall)(inldata) ex.inlIndex = pcdatavalue(ex.funcInfo, _PCDATA_InlTreeIndex, ex.pc, nil) } else { ex.inlTree = nil ex.inlIndex = -1 } } // next returns the next Frame in the expansion of pc and sets ex.more // if there are more Frames to follow. func (ex *pcExpander) next() Frame { if !ex.more { return Frame{} } if len(ex.frames) > 0 { // Return pre-expended frame. frame := ex.frames[0] ex.frames = ex.frames[1:] ex.more = len(ex.frames) > 0 return frame } if ex.inlIndex >= 0 { // Return inner inlined frame. call := ex.inlTree[ex.inlIndex] frame := Frame{ PC: ex.pc, Func: nil, // nil for inlined functions Function: funcnameFromNameoff(ex.funcInfo, call.func_), File: ex.file, Line: int(ex.line), Entry: ex.funcInfo.entry, } ex.file = funcfile(ex.funcInfo, call.file) ex.line = call.line ex.inlIndex = call.parent return frame } // No inlining or pre-expanded frames. ex.more = false return Frame{ PC: ex.pc, Func: ex.funcInfo._Func(), Function: funcname(ex.funcInfo), File: ex.file, Line: int(ex.line), Entry: ex.funcInfo.entry, } } // expandCgoFrames expands frame information for pc, known to be // a non-Go function, using the cgoSymbolizer hook. expandCgoFrames // returns nil if pc could not be expanded. func expandCgoFrames(pc uintptr) []Frame { arg := cgoSymbolizerArg{pc: pc} callCgoSymbolizer(&arg) if arg.file == nil && arg.funcName == nil { // No useful information from symbolizer. return nil } var frames []Frame for { frames = append(frames, Frame{ PC: pc, Func: nil, Function: gostring(arg.funcName), File: gostring(arg.file), Line: int(arg.lineno), Entry: arg.entry, }) if arg.more == 0 { break } callCgoSymbolizer(&arg) } // No more frames for this PC. Tell the symbolizer we are done. // We don't try to maintain a single cgoSymbolizerArg for the // whole use of Frames, because there would be no good way to tell // the symbolizer when we are done. arg.pc = 0 callCgoSymbolizer(&arg) return frames } // NOTE: Func does not expose the actual unexported fields, because we return *Func // values to users, and we want to keep them from being able to overwrite the data // with (say) *f = Func{}. // All code operating on a *Func must call raw() to get the *_func // or funcInfo() to get the funcInfo instead. // A Func represents a Go function in the running binary. type Func struct { opaque struct{} // unexported field to disallow conversions } func (f *Func) raw() *_func { return (*_func)(unsafe.Pointer(f)) } func (f *Func) funcInfo() funcInfo { fn := f.raw() return funcInfo{fn, findmoduledatap(fn.entry)} } // PCDATA and FUNCDATA table indexes. // // See funcdata.h and ../cmd/internal/obj/funcdata.go. const ( _PCDATA_StackMapIndex = 0 _PCDATA_InlTreeIndex = 1 _FUNCDATA_ArgsPointerMaps = 0 _FUNCDATA_LocalsPointerMaps = 1 _FUNCDATA_InlTree = 2 _ArgsSizeUnknown = -0x80000000 ) // moduledata records information about the layout of the executable // image. It is written by the linker. Any changes here must be // matched changes to the code in cmd/internal/ld/symtab.go:symtab. // moduledata is stored in read-only memory; none of the pointers here // are visible to the garbage collector. type moduledata struct { pclntable []byte ftab []functab filetab []uint32 findfunctab uintptr minpc, maxpc uintptr text, etext uintptr noptrdata, enoptrdata uintptr data, edata uintptr bss, ebss uintptr noptrbss, enoptrbss uintptr end, gcdata, gcbss uintptr types, etypes uintptr textsectmap []textsect typelinks []int32 // offsets from types itablinks []*itab ptab []ptabEntry pluginpath string pkghashes []modulehash modulename string modulehashes []modulehash gcdatamask, gcbssmask bitvector typemap map[typeOff]*_type // offset to *_rtype in previous module next *moduledata } // A modulehash is used to compare the ABI of a new module or a // package in a new module with the loaded program. // // For each shared library a module links against, the linker creates an entry in the // moduledata.modulehashes slice containing the name of the module, the abi hash seen // at link time and a pointer to the runtime abi hash. These are checked in // moduledataverify1 below. // // For each loaded plugin, the the pkghashes slice has a modulehash of the // newly loaded package that can be used to check the plugin's version of // a package against any previously loaded version of the package. // This is done in plugin.lastmoduleinit. type modulehash struct { modulename string linktimehash string runtimehash *string } // pinnedTypemaps are the map[typeOff]*_type from the moduledata objects. // // These typemap objects are allocated at run time on the heap, but the // only direct reference to them is in the moduledata, created by the // linker and marked SNOPTRDATA so it is ignored by the GC. // // To make sure the map isn't collected, we keep a second reference here. var pinnedTypemaps []map[typeOff]*_type var firstmoduledata moduledata // linker symbol var lastmoduledatap *moduledata // linker symbol var modulesSlice unsafe.Pointer // see activeModules // activeModules returns a slice of active modules. // // A module is active once its gcdatamask and gcbssmask have been // assembled and it is usable by the GC. func activeModules() []*moduledata { p := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice))) if p == nil { return nil } return *p } // modulesinit creates the active modules slice out of all loaded modules. // // When a module is first loaded by the dynamic linker, an .init_array // function (written by cmd/link) is invoked to call addmoduledata, // appending to the module to the linked list that starts with // firstmoduledata. // // There are two times this can happen in the lifecycle of a Go // program. First, if compiled with -linkshared, a number of modules // built with -buildmode=shared can be loaded at program initialization. // Second, a Go program can load a module while running that was built // with -buildmode=plugin. // // After loading, this function is called which initializes the // moduledata so it is usable by the GC and creates a new activeModules // list. // // Only one goroutine may call modulesinit at a time. func modulesinit() { modules := new([]*moduledata) for md := &firstmoduledata; md != nil; md = md.next { *modules = append(*modules, md) if md.gcdatamask == (bitvector{}) { md.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(md.gcdata)), md.edata-md.data) md.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(md.gcbss)), md.ebss-md.bss) } } // Modules appear in the moduledata linked list in the order they are // loaded by the dynamic loader, with one exception: the // firstmoduledata itself the module that contains the runtime. This // is not always the first module (when using -buildmode=shared, it // is typically libstd.so, the second module). The order matters for // typelinksinit, so we swap the first module with whatever module // contains the main function. // // See Issue #18729. mainText := funcPC(main_main) for i, md := range *modules { if md.text <= mainText && mainText <= md.etext { (*modules)[0] = md (*modules)[i] = &firstmoduledata break } } atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer(modules)) } type functab struct { entry uintptr funcoff uintptr } // Mapping information for secondary text sections type textsect struct { vaddr uintptr // prelinked section vaddr length uintptr // section length baseaddr uintptr // relocated section address } const minfunc = 16 // minimum function size const pcbucketsize = 256 * minfunc // size of bucket in the pc->func lookup table // findfunctab is an array of these structures. // Each bucket represents 4096 bytes of the text segment. // Each subbucket represents 256 bytes of the text segment. // To find a function given a pc, locate the bucket and subbucket for // that pc. Add together the idx and subbucket value to obtain a // function index. Then scan the functab array starting at that // index to find the target function. // This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead. type findfuncbucket struct { idx uint32 subbuckets [16]byte } func moduledataverify() { for datap := &firstmoduledata; datap != nil; datap = datap.next { moduledataverify1(datap) } } const debugPcln = false func moduledataverify1(datap *moduledata) { // See golang.org/s/go12symtab for header: 0xfffffffb, // two zero bytes, a byte giving the PC quantum, // and a byte giving the pointer width in bytes. pcln := *(**[8]byte)(unsafe.Pointer(&datap.pclntable)) pcln32 := *(**[2]uint32)(unsafe.Pointer(&datap.pclntable)) if pcln32[0] != 0xfffffffb || pcln[4] != 0 || pcln[5] != 0 || pcln[6] != sys.PCQuantum || pcln[7] != sys.PtrSize { println("runtime: function symbol table header:", hex(pcln32[0]), hex(pcln[4]), hex(pcln[5]), hex(pcln[6]), hex(pcln[7])) throw("invalid function symbol table\n") } // ftab is lookup table for function by program counter. nftab := len(datap.ftab) - 1 var pcCache pcvalueCache for i := 0; i < nftab; i++ { // NOTE: ftab[nftab].entry is legal; it is the address beyond the final function. if datap.ftab[i].entry > datap.ftab[i+1].entry { f1 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff])), datap} f2 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff])), datap} f2name := "end" if i+1 < nftab { f2name = funcname(f2) } println("function symbol table not sorted by program counter:", hex(datap.ftab[i].entry), funcname(f1), ">", hex(datap.ftab[i+1].entry), f2name) for j := 0; j <= i; j++ { print("\t", hex(datap.ftab[j].entry), " ", funcname(funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff])), datap}), "\n") } throw("invalid runtime symbol table") } if debugPcln || nftab-i < 5 { // Check a PC near but not at the very end. // The very end might be just padding that is not covered by the tables. // No architecture rounds function entries to more than 16 bytes, // but if one came along we'd need to subtract more here. // But don't use the next PC if it corresponds to a foreign object chunk // (no pcln table, f2.pcln == 0). That chunk might have an alignment // more than 16 bytes. f := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff])), datap} end := f.entry if i+1 < nftab { f2 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff])), datap} if f2.pcln != 0 { end = f2.entry - 16 if end < f.entry { end = f.entry } } } pcvalue(f, f.pcfile, end, &pcCache, true) pcvalue(f, f.pcln, end, &pcCache, true) pcvalue(f, f.pcsp, end, &pcCache, true) } } if datap.minpc != datap.ftab[0].entry || datap.maxpc != datap.ftab[nftab].entry { throw("minpc or maxpc invalid") } for _, modulehash := range datap.modulehashes { if modulehash.linktimehash != *modulehash.runtimehash { println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename) throw("abi mismatch") } } } // FuncForPC returns a *Func describing the function that contains the // given program counter address, or else nil. func FuncForPC(pc uintptr) *Func { return findfunc(pc)._Func() } // Name returns the name of the function. func (f *Func) Name() string { return funcname(f.funcInfo()) } // Entry returns the entry address of the function. func (f *Func) Entry() uintptr { return f.raw().entry } // FileLine returns the file name and line number of the // source code corresponding to the program counter pc. // The result will not be accurate if pc is not a program // counter within f. func (f *Func) FileLine(pc uintptr) (file string, line int) { // Pass strict=false here, because anyone can call this function, // and they might just be wrong about targetpc belonging to f. file, line32 := funcline1(f.funcInfo(), pc, false) return file, int(line32) } func findmoduledatap(pc uintptr) *moduledata { for datap := &firstmoduledata; datap != nil; datap = datap.next { if datap.minpc <= pc && pc < datap.maxpc { return datap } } return nil } type funcInfo struct { *_func datap *moduledata } func (f funcInfo) valid() bool { return f._func != nil } func (f funcInfo) _Func() *Func { return (*Func)(unsafe.Pointer(f._func)) } func findfunc(pc uintptr) funcInfo { datap := findmoduledatap(pc) if datap == nil { return funcInfo{} } const nsub = uintptr(len(findfuncbucket{}.subbuckets)) x := pc - datap.minpc b := x / pcbucketsize i := x % pcbucketsize / (pcbucketsize / nsub) ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{}))) idx := ffb.idx + uint32(ffb.subbuckets[i]) // If the idx is beyond the end of the ftab, set it to the end of the table and search backward. // This situation can occur if multiple text sections are generated to handle large text sections // and the linker has inserted jump tables between them. if idx >= uint32(len(datap.ftab)) { idx = uint32(len(datap.ftab) - 1) } if pc < datap.ftab[idx].entry { // With multiple text sections, the idx might reference a function address that // is higher than the pc being searched, so search backward until the matching address is found. for datap.ftab[idx].entry > pc && idx > 0 { idx-- } if idx == 0 { throw("findfunc: bad findfunctab entry idx") } } else { // linear search to find func with pc >= entry. for datap.ftab[idx+1].entry <= pc { idx++ } } return funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[idx].funcoff])), datap} } type pcvalueCache struct { entries [16]pcvalueCacheEnt } type pcvalueCacheEnt struct { // targetpc and off together are the key of this cache entry. targetpc uintptr off int32 // val is the value of this cached pcvalue entry. val int32 } func pcvalue(f funcInfo, off int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 { if off == 0 { return -1 } // Check the cache. This speeds up walks of deep stacks, which // tend to have the same recursive functions over and over. // // This cache is small enough that full associativity is // cheaper than doing the hashing for a less associative // cache. if cache != nil { for i := range cache.entries { // We check off first because we're more // likely to have multiple entries with // different offsets for the same targetpc // than the other way around, so we'll usually // fail in the first clause. ent := &cache.entries[i] if ent.off == off && ent.targetpc == targetpc { return ent.val } } } if !f.valid() { if strict && panicking == 0 { print("runtime: no module data for ", hex(f.entry), "\n") throw("no module data") } return -1 } datap := f.datap p := datap.pclntable[off:] pc := f.entry val := int32(-1) for { var ok bool p, ok = step(p, &pc, &val, pc == f.entry) if !ok { break } if targetpc < pc { // Replace a random entry in the cache. Random // replacement prevents a performance cliff if // a recursive stack's cycle is slightly // larger than the cache. if cache != nil { ci := fastrandn(uint32(len(cache.entries))) cache.entries[ci] = pcvalueCacheEnt{ targetpc: targetpc, off: off, val: val, } } return val } } // If there was a table, it should have covered all program counters. // If not, something is wrong. if panicking != 0 || !strict { return -1 } print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n") p = datap.pclntable[off:] pc = f.entry val = -1 for { var ok bool p, ok = step(p, &pc, &val, pc == f.entry) if !ok { break } print("\tvalue=", val, " until pc=", hex(pc), "\n") } throw("invalid runtime symbol table") return -1 } func cfuncname(f funcInfo) *byte { if !f.valid() || f.nameoff == 0 { return nil } return &f.datap.pclntable[f.nameoff] } func funcname(f funcInfo) string { return gostringnocopy(cfuncname(f)) } func funcnameFromNameoff(f funcInfo, nameoff int32) string { datap := f.datap if !f.valid() { return "" } cstr := &datap.pclntable[nameoff] return gostringnocopy(cstr) } func funcfile(f funcInfo, fileno int32) string { datap := f.datap if !f.valid() { return "?" } return gostringnocopy(&datap.pclntable[datap.filetab[fileno]]) } func funcline1(f funcInfo, targetpc uintptr, strict bool) (file string, line int32) { datap := f.datap if !f.valid() { return "?", 0 } fileno := int(pcvalue(f, f.pcfile, targetpc, nil, strict)) line = pcvalue(f, f.pcln, targetpc, nil, strict) if fileno == -1 || line == -1 || fileno >= len(datap.filetab) { // print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n") return "?", 0 } file = gostringnocopy(&datap.pclntable[datap.filetab[fileno]]) return } func funcline(f funcInfo, targetpc uintptr) (file string, line int32) { return funcline1(f, targetpc, true) } func funcspdelta(f funcInfo, targetpc uintptr, cache *pcvalueCache) int32 { x := pcvalue(f, f.pcsp, targetpc, cache, true) if x&(sys.PtrSize-1) != 0 { print("invalid spdelta ", funcname(f), " ", hex(f.entry), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n") } return x } func pcdatavalue(f funcInfo, table int32, targetpc uintptr, cache *pcvalueCache) int32 { if table < 0 || table >= f.npcdata { return -1 } off := *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4)) return pcvalue(f, off, targetpc, cache, true) } func funcdata(f funcInfo, i int32) unsafe.Pointer { if i < 0 || i >= f.nfuncdata { return nil } p := add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(f.npcdata)*4) if sys.PtrSize == 8 && uintptr(p)&4 != 0 { if uintptr(unsafe.Pointer(f._func))&4 != 0 { println("runtime: misaligned func", f._func) } p = add(p, 4) } return *(*unsafe.Pointer)(add(p, uintptr(i)*sys.PtrSize)) } // step advances to the next pc, value pair in the encoded table. func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) { // For both uvdelta and pcdelta, the common case (~70%) // is that they are a single byte. If so, avoid calling readvarint. uvdelta := uint32(p[0]) if uvdelta == 0 && !first { return nil, false } n := uint32(1) if uvdelta&0x80 != 0 { n, uvdelta = readvarint(p) } p = p[n:] if uvdelta&1 != 0 { uvdelta = ^(uvdelta >> 1) } else { uvdelta >>= 1 } vdelta := int32(uvdelta) pcdelta := uint32(p[0]) n = 1 if pcdelta&0x80 != 0 { n, pcdelta = readvarint(p) } p = p[n:] *pc += uintptr(pcdelta * sys.PCQuantum) *val += vdelta return p, true } // readvarint reads a varint from p. func readvarint(p []byte) (read uint32, val uint32) { var v, shift, n uint32 for { b := p[n] n++ v |= uint32(b&0x7F) << (shift & 31) if b&0x80 == 0 { break } shift += 7 } return n, v } type stackmap struct { n int32 // number of bitmaps nbit int32 // number of bits in each bitmap bytedata [1]byte // bitmaps, each starting on a byte boundary } //go:nowritebarrier func stackmapdata(stkmap *stackmap, n int32) bitvector { if n < 0 || n >= stkmap.n { throw("stackmapdata: index out of range") } return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+7)>>3))))} } // inlinedCall is the encoding of entries in the FUNCDATA_InlTree table. type inlinedCall struct { parent int32 // index of parent in the inltree, or < 0 file int32 // fileno index into filetab line int32 // line number of the call site func_ int32 // offset into pclntab for name of called function }