// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains the printf-checker. package main import ( "flag" "go/ast" "go/token" "strconv" "strings" "unicode/utf8" ) var printfuncs = flag.String("printfuncs", "", "comma-separated list of print function names to check") // printfList records the formatted-print functions. The value is the location // of the format parameter. Names are lower-cased so the lookup is // case insensitive. var printfList = map[string]int{ "errorf": 0, "fatalf": 0, "fprintf": 1, "panicf": 0, "printf": 0, "sprintf": 0, } // printList records the unformatted-print functions. The value is the location // of the first parameter to be printed. Names are lower-cased so the lookup is // case insensitive. var printList = map[string]int{ "error": 0, "fatal": 0, "fprint": 1, "fprintln": 1, "panic": 0, "panicln": 0, "print": 0, "println": 0, "sprint": 0, "sprintln": 0, } // checkCall triggers the print-specific checks if the call invokes a print function. func (f *File) checkFmtPrintfCall(call *ast.CallExpr, Name string) { if !vet("printf") { return } name := strings.ToLower(Name) if skip, ok := printfList[name]; ok { f.checkPrintf(call, Name, skip) return } if skip, ok := printList[name]; ok { f.checkPrint(call, Name, skip) return } } // literal returns the literal value represented by the expression, or nil if it is not a literal. func (f *File) literal(value ast.Expr) *ast.BasicLit { switch v := value.(type) { case *ast.BasicLit: return v case *ast.ParenExpr: return f.literal(v.X) case *ast.BinaryExpr: if v.Op != token.ADD { break } litX := f.literal(v.X) litY := f.literal(v.Y) if litX != nil && litY != nil { lit := *litX x, errX := strconv.Unquote(litX.Value) y, errY := strconv.Unquote(litY.Value) if errX == nil && errY == nil { return &ast.BasicLit{ ValuePos: lit.ValuePos, Kind: lit.Kind, Value: strconv.Quote(x + y), } } } case *ast.Ident: // See if it's a constant or initial value (we can't tell the difference). if v.Obj == nil || v.Obj.Decl == nil { return nil } valueSpec, ok := v.Obj.Decl.(*ast.ValueSpec) if ok && len(valueSpec.Names) == len(valueSpec.Values) { // Find the index in the list of names var i int for i = 0; i < len(valueSpec.Names); i++ { if valueSpec.Names[i].Name == v.Name { if lit, ok := valueSpec.Values[i].(*ast.BasicLit); ok { return lit } return nil } } } } return nil } // checkPrintf checks a call to a formatted print routine such as Printf. // call.Args[formatIndex] is (well, should be) the format argument. func (f *File) checkPrintf(call *ast.CallExpr, name string, formatIndex int) { if formatIndex >= len(call.Args) { return } lit := f.literal(call.Args[formatIndex]) if lit == nil { if *verbose { f.Warn(call.Pos(), "can't check non-literal format in call to", name) } return } if lit.Kind != token.STRING { f.Badf(call.Pos(), "literal %v not a string in call to", lit.Value, name) } format, err := strconv.Unquote(lit.Value) if err != nil { // Shouldn't happen if parser returned no errors, but be safe. f.Badf(call.Pos(), "invalid quoted string literal") } firstArg := formatIndex + 1 // Arguments are immediately after format string. if !strings.Contains(format, "%") { if len(call.Args) > firstArg { f.Badf(call.Pos(), "no formatting directive in %s call", name) } return } // Hard part: check formats against args. argNum := firstArg for i, w := 0, 0; i < len(format); i += w { w = 1 if format[i] == '%' { verb, flags, nbytes, nargs := f.parsePrintfVerb(call, format[i:]) w = nbytes if verb == '%' { // "%%" does nothing interesting. continue } // If we've run out of args, print after loop will pick that up. if argNum+nargs <= len(call.Args) { f.checkPrintfArg(call, verb, flags, argNum, nargs) } argNum += nargs } } // TODO: Dotdotdot is hard. if call.Ellipsis.IsValid() && argNum != len(call.Args) { return } if argNum != len(call.Args) { expect := argNum - firstArg numArgs := len(call.Args) - firstArg f.Badf(call.Pos(), "wrong number of args for format in %s call: %d needed but %d args", name, expect, numArgs) } } // parsePrintfVerb returns the verb that begins the format string, along with its flags, // the number of bytes to advance the format to step past the verb, and number of // arguments it consumes. func (f *File) parsePrintfVerb(call *ast.CallExpr, format string) (verb rune, flags []byte, nbytes, nargs int) { // There's guaranteed a percent sign. flags = make([]byte, 0, 5) nbytes = 1 end := len(format) // There may be flags. FlagLoop: for nbytes < end { switch format[nbytes] { case '#', '0', '+', '-', ' ': flags = append(flags, format[nbytes]) nbytes++ default: break FlagLoop } } getNum := func() { if nbytes < end && format[nbytes] == '*' { nbytes++ nargs++ } else { for nbytes < end && '0' <= format[nbytes] && format[nbytes] <= '9' { nbytes++ } } } // There may be a width. getNum() // If there's a period, there may be a precision. if nbytes < end && format[nbytes] == '.' { flags = append(flags, '.') // Treat precision as a flag. nbytes++ getNum() } // Now a verb. c, w := utf8.DecodeRuneInString(format[nbytes:]) nbytes += w verb = c if c != '%' { nargs++ } return } // printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask. type printfArgType int const ( argBool printfArgType = 1 << iota argInt argRune argString argFloat argPointer anyType printfArgType = ^0 ) type printVerb struct { verb rune flags string // known flags are all ASCII typ printfArgType } // Common flag sets for printf verbs. const ( numFlag = " -+.0" sharpNumFlag = " -+.0#" allFlags = " -+.0#" ) // printVerbs identifies which flags are known to printf for each verb. // TODO: A type that implements Formatter may do what it wants, and vet // will complain incorrectly. var printVerbs = []printVerb{ // '-' is a width modifier, always valid. // '.' is a precision for float, max width for strings. // '+' is required sign for numbers, Go format for %v. // '#' is alternate format for several verbs. // ' ' is spacer for numbers {'b', numFlag, argInt | argFloat}, {'c', "-", argRune | argInt}, {'d', numFlag, argInt}, {'e', numFlag, argFloat}, {'E', numFlag, argFloat}, {'f', numFlag, argFloat}, {'F', numFlag, argFloat}, {'g', numFlag, argFloat}, {'G', numFlag, argFloat}, {'o', sharpNumFlag, argInt}, {'p', "-#", argPointer}, {'q', " -+.0#", argRune | argInt | argString}, {'s', " -+.0", argString}, {'t', "-", argBool}, {'T', "-", anyType}, {'U', "-#", argRune | argInt}, {'v', allFlags, anyType}, {'x', sharpNumFlag, argRune | argInt | argString}, {'X', sharpNumFlag, argRune | argInt | argString}, } const printfVerbs = "bcdeEfFgGopqstTvxUX" func (f *File) checkPrintfArg(call *ast.CallExpr, verb rune, flags []byte, argNum, nargs int) { // Linear scan is fast enough for a small list. for _, v := range printVerbs { if v.verb == verb { for _, flag := range flags { if !strings.ContainsRune(v.flags, rune(flag)) { f.Badf(call.Pos(), "unrecognized printf flag for verb %q: %q", verb, flag) return } } // Verb is good. If nargs>1, we have something like %.*s and all but the final // arg must be integer. for i := 0; i < nargs-1; i++ { if !f.matchArgType(argInt, call.Args[argNum+i]) { f.Badf(call.Pos(), "arg %s for * in printf format not of type int", f.gofmt(call.Args[argNum+i])) } } for _, v := range printVerbs { if v.verb == verb { arg := call.Args[argNum+nargs-1] if !f.matchArgType(v.typ, arg) { typeString := "" if typ := f.pkg.types[arg]; typ != nil { typeString = typ.String() } f.Badf(call.Pos(), "arg %s for printf verb %%%c of wrong type: %s", f.gofmt(arg), verb, typeString) } break } } return } } f.Badf(call.Pos(), "unrecognized printf verb %q", verb) } // checkPrint checks a call to an unformatted print routine such as Println. // call.Args[firstArg] is the first argument to be printed. func (f *File) checkPrint(call *ast.CallExpr, name string, firstArg int) { isLn := strings.HasSuffix(name, "ln") isF := strings.HasPrefix(name, "F") args := call.Args // check for Println(os.Stderr, ...) if firstArg == 0 && !isF && len(args) > 0 { if sel, ok := args[0].(*ast.SelectorExpr); ok { if x, ok := sel.X.(*ast.Ident); ok { if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") { f.Badf(call.Pos(), "first argument to %s is %s.%s", name, x.Name, sel.Sel.Name) } } } } if len(args) <= firstArg { // If we have a call to a method called Error that satisfies the Error interface, // then it's ok. Otherwise it's something like (*T).Error from the testing package // and we need to check it. if name == "Error" && f.isErrorMethodCall(call) { return } // If it's an Error call now, it's probably for printing errors. if !isLn { // Check the signature to be sure: there are niladic functions called "error". if firstArg != 0 || f.numArgsInSignature(call) != firstArg { f.Badf(call.Pos(), "no args in %s call", name) } } return } arg := args[firstArg] if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING { if strings.Contains(lit.Value, "%") { f.Badf(call.Pos(), "possible formatting directive in %s call", name) } } if isLn { // The last item, if a string, should not have a newline. arg = args[len(call.Args)-1] if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING { if strings.HasSuffix(lit.Value, `\n"`) { f.Badf(call.Pos(), "%s call ends with newline", name) } } } }