The tree's pretty inconsistent about single space vs double space
after a period in documentation. Make it consistently a single space,
per earlier decisions. This means contributors won't be confused by
misleading precedence.
This CL doesn't use go/doc to parse. It only addresses // comments.
It was generated with:
$ perl -i -npe 's,^(\s*// .+[a-z]\.) +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.) +([A-Z])')
$ go test go/doc -update
Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7
Reviewed-on: https://go-review.googlesource.com/20022
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Dave Day <djd@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This change breaks out most of the atomics functions in the runtime
into package runtime/internal/atomic. It adds some basic support
in the toolchain for runtime packages, and also modifies linux/arm
atomics to remove the dependency on the runtime's mutex. The mutexes
have been replaced with spinlocks.
all trybots are happy!
In addition to the trybots, I've tested on the darwin/arm64 builder,
on the darwin/arm builder, and on a ppc64le machine.
Change-Id: I6698c8e3cf3834f55ce5824059f44d00dc8e3c2f
Reviewed-on: https://go-review.googlesource.com/14204
Run-TryBot: Michael Matloob <matloob@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
There are several steps to stopping and starting the world and
currently they're open-coded in several places. The garbage collector
is the only thing that needs to stop and start the world in a
non-trivial pattern. Replace all other uses with calls to higher-level
functions that implement the entire pattern necessary to stop and
start the world.
This is a pure refectoring and should not change any code semantics.
In the following commits, we'll make changes that are easier to do
with this abstraction in place.
This commit renames the old starttheworld to startTheWorldWithSema.
This is a slight misnomer right now because the callers release
worldsema just before calling this. However, a later commit will swap
these and I don't want to think of another name in the mean time.
Change-Id: I5dc97f87b44fb98963c49c777d7053653974c911
Reviewed-on: https://go-review.googlesource.com/10154
Reviewed-by: Russ Cox <rsc@golang.org>
m.gcing has become overloaded to mean "don't preempt this g" in
general. Once the garbage collector is preemptible, the one thing it
*won't* mean is that we're in the garbage collector.
So, rename gcing to "preemptoff" and make it a string giving a reason
that preemption is disabled. gcing was never set to anything but 0 or
1, so we don't have to worry about there being a stack of reasons.
Change-Id: I4337c29e8e942e7aa4f106fc29597e1b5de4ef46
Reviewed-on: https://go-review.googlesource.com/3660
Reviewed-by: Russ Cox <rsc@golang.org>
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r, daniel.morsing
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/172260043
semacquire might need to park the currently running G. It can
only park if called from the G stack (because it has no way of
saving the M stack state). So all calls to semacquire must come
from the G stack.
The three violators are GOMAXPROCS, ReadMemStats, and WriteHeapDump.
This change moves the semacquire call earlier, out of their C code
and into their Go code.
This seldom caused bugs because semacquire seldom actually had
to park the caller. But it did happen intermittently.
Fixes#8749
LGTM=dvyukov
R=golang-codereviews, dvyukov, bradfitz
CC=golang-codereviews
https://golang.org/cl/144940043