1
0
mirror of https://github.com/golang/go synced 2024-11-19 10:24:43 -07:00
Commit Graph

15 Commits

Author SHA1 Message Date
Alan Donovan
8636f40baf go.tools/ssa: CreateTestMainPackage: synthesize test driver as a package ("testmain") not 'main' function.
This allows us to run/analyze multiple tests.
Also it causes the production code packages to be properly initialized.

Also:
- cmd/ssadump: improved usage message (add example;
  incorporate LoadInitialPackages usage; explain how -run
  finds main).
- pointer, oracle, ssa/interp: use CreateTestMainPackage.
- ssa/builder.go: remove 'rundefers' instruction from package init,
  which no longer uses 'defer'.

R=gri
CC=golang-dev
https://golang.org/cl/15920047
2013-10-23 18:07:53 -04:00
Alan Donovan
87ced824bd go.tools/ssa: fix computation of set of types requiring method sets.
Motivation:

Previously, we assumed that the set of types for which a
complete method set (containing all synthesized wrapper
functions) is required at runtime was the set of types
used as operands to some *ssa.MakeInterface instruction.

In fact, this is an underapproximation because types can
be derived from other ones via reflection, and some of
these may need methods.  The reflect.Type API allows *T to
be derived from T, and these may have different method
sets.  Reflection also allows almost any subcomponent of a
type to be accessed (with one exception: given T, defined
'type T struct{S}', you can reach S but not struct{S}).

As a result, the pointer analysis was unable to generate
all necessary constraints before running the solver,
causing a crash when reflection derives types whose
methods are unavailable.  (A similar problem would afflict
an ahead-of-time compiler based on ssa.  The ssa/interp
interpreter was immune only because it does not require
all wrapper methods to be created before execution
begins.)

Description:

This change causes the SSA builder to record, for each
package, the set of all types with non-empty method sets that
are referenced within that package.  This set is accessed via
Packages.TypesWithMethodSets().  Program.TypesWithMethodSets()
returns its union across all packages.

The set of references that matter are:
- types of operands to some MakeInterface instruction (as before)
- types of all exported package members
- all subcomponents of the above, recursively.
This is a conservative approximation to the set of types
whose methods may be called dynamically.

We define the owning package of a type as follows:
- the owner of a named type is the package in which it is defined;
- the owner of a pointer-to-named type is the owner of that named type;
- the owner of all other types is nil.

A package must include the method sets for all types that it
owns, and all subcomponents of that type that are not owned by
another package, recursively.  Types with an owner appear in
exactly one package; types with no owner (such as struct{T})
may appear within multiple packages.
(A typical Go compiler would emit multiple copies of these
methods as weak symbols; a typical linker would eliminate
duplicates.)

Also:
- go/types/typemap: implement hash function for *Tuple.
- pointer: generate nodes/constraints for all of
  ssa.Program.TypesWithMethodSets().
  Add rtti.go regression test.
- Add API test of Package.TypesWithMethodSets().
- Set Function.Pkg to nil (again) for wrapper functions,
  since these may be shared by many packages.
- Remove a redundant logging statement.
- Document that ssa CREATE phase is in fact sequential.

Fixes golang/go#6605

R=gri
CC=golang-dev
https://golang.org/cl/14920056
2013-10-23 17:07:52 -04:00
Alan Donovan
8bb20b8231 go.tools/pointer: more reflection.
Support for:
        (*reflect.rtype).Field
        (*reflect.rtype).FieldByName
        reflect.MakeSlice
        runtime.SetFinalizer

Details:
- analysis locates ssa.Functions for (reflect.Value).Call
  and runtime.SetFinalizer during startup to that it can
  special-case them during genCall.  ('Call' is forthcoming.)
- The callsite.targets mechanism is only used for dynamic
  calls now.  For static calls we call callEdge during constraint
  generation; this is a minor optimisation.
- Static calls to SetFinalizer are inlined so that the call
  appears to go direct to the finalizer.  (We'll use the same
  trick for (reflect.Value).Call.)
- runtime.FuncForPC: treat as a no-op.
- Fixed pointer_test to properly deal with expectations
  that are multi-sets.
- Inlined rtypeMethodByNameConstraint.addMethod.
- More tests.

R=crawshaw
CC=golang-dev
https://golang.org/cl/14682045
2013-10-17 09:26:44 -04:00
Alan Donovan
aff951c80f go.tools/pointer: more reflection operators.
(reflect.Value).Bytes
(reflect.Value).Elem
(reflect.Value).Index
(reflect.Value).SetBytes
(reflect.Value).Slice
reflect.PtrTo
reflect.SliceOf

+ Tests.

Also: comment out an 'info-'level print statement in the test; it was distracting.

R=crawshaw
CC=golang-dev
https://golang.org/cl/14454055
2013-10-11 15:34:19 -04:00
Alan Donovan
9cce4759bb go.tools/importer: expose CreatePackage method.
The new method is functionally identical to typeCheck, and
obviates the LoadMainPackage method.

Updated all clients.

Fixes bug 6561.

R=gri
CC=golang-dev
https://golang.org/cl/14494051
2013-10-10 12:37:49 -04:00
Alan Donovan
8ae5d36d2a go.tools: clear DeclarationErrors flag; it's redundant w.r.t go/types checking.
R=gri
CC=golang-dev
https://golang.org/cl/14147043
2013-10-08 10:34:36 -04:00
Alan Donovan
06c4192423 go.tools/pointer: minor API simplifications.
Details:
- Warnings are reported as values in Result, not a callback in Config.
- remove TODO to eliminate Print callback.  It's better than the alternative.
- remove unused Config.root field.
- hang Result off analysis object (impl. detail)
- reword TODO.

R=crawshaw
CC=golang-dev
https://golang.org/cl/14128043
2013-09-30 12:39:54 -04:00
Alan Donovan
785cfaa938 go.tools/pointer: use new callgraph API.
Also: pointer.Analyze now returns a pointer.Result object,
containing the callgraph and the results of ssa.Value queries.

The oracle has been updated to use the new call and pointer APIs.

R=crawshaw, gri
CC=golang-dev
https://golang.org/cl/13915043
2013-09-25 17:17:42 -04:00
Alan Donovan
3371b79a96 go.tools/pointer: reflect, part 2: channels.
(reflect.Value).Send
        (reflect.Value).TrySend
        (reflect.Value).Recv
        (reflect.Value).TryRecv
        (reflect.Type).ChanOf
        (reflect.Type).In
        (reflect.Type).Out
        reflect.Indirect
        reflect.MakeChan

Also:
- specialize genInvoke when the receiver is a reflect.Type under the
  assumption that there's only one possible concrete type.  This
  makes all reflect.Type operations context-sensitive since the calls
  are no longer dynamic.
- Rename all variables to match the actual parameter names used in
  the reflect API.
- Add pointer.Config.Reflection flag
  (exposed in oracle as --reflect, default false) to enable reflection.
  It currently adds about 20% running time.  I'll make it true after
  the presolver is implemented.
- Simplified worklist datatype and solver main loop slightly
  (~10% speed improvement).
- Use addLabel() utility to add a label to a PTS.

(Working on my 3 yr old 2x2GHz+4GB Mac vs 8x4GHz+24GB workstation,
one really notices the cost of pointer analysis.
Note to self: time to implement presolver.)

R=crawshaw
CC=golang-dev
https://golang.org/cl/13242062
2013-09-23 16:13:01 -04:00
Alan Donovan
3b5de067a1 go.tools/pointer: reflection, part 1: maps, and some core features.
Core:
        reflect.TypeOf
        reflect.ValueOf
        reflect.Zero
        reflect.Value.Interface
Maps:
        (reflect.Value).MapIndex
        (reflect.Value).MapKeys
        (reflect.Value).SetMapIndex
        (*reflect.rtype).Elem
        (*reflect.rtype).Key

+ tests:
  pointer/testdata/mapreflect.go.
  oracle/testdata/src/main/reflection.go.

Interface objects (T, V...) have been renamed "tagged objects".

Abstraction: we model reflect.Value similar to
interface{}---as a pointer that points only to tagged
objects---but a reflect.Value may also point to an "indirect
tagged object", one in which the payload V is of type *T not T.
These are required because reflect.Values can hold lvalues,
e.g. when derived via Field() or Elem(), though we won't use
them till we get to structs and pointers.

Solving: each reflection intrinsic defines a new constraint
and resolution rule.  Because of the nature of reflection,
generalizing across types, the resolution rules dynamically
create additional complex constraints during solving, where
previously only simple (copy) constraints were created.
This requires some solver changes:

  The work done before the main solver loop (to attach new
  constraints to the graph) is now done before each iteration,
  in processNewConstraints.

  Its loop over constraints is broken into two passes:
  the first handles base (addr-of) constraints,
  the second handles simple and complex constraints.

  constraint.init() has been inlined.  The only behaviour that
  varies across constraints is ptr()

Sadly this will pessimize presolver optimisations, when we get
there; such is the price of reflection.

Objects: reflection intrinsics create objects (i.e. cause
memory allocations) with no SSA operation.  We will represent
them as the cgnode of the instrinsic (e.g. reflect.New), so we
extend Labels and node.data to represent objects as a product
(not sum) of ssa.Value and cgnode and pull this out into its
own type, struct object.  This simplifies a number of
invariants and saves space.  The ntObject flag is now
represented by obj!=nil; the other flags are moved into
object.

cgnodes are now always recorded in objects/Labels for which it
is appropriate (all but those for globals, constants and the
shared contours for functions).

Also:
- Prepopulate the flattenMemo cache to consider reflect.Value
  a fake pointer, not a struct.
- Improve accessors and documentation on type Label.
- @conctypes assertions renamed @types (since dyn. types needn't be concrete).
- add oracle 'describe' test on an interface (missing, an oversight).

R=crawshaw
CC=golang-dev
https://golang.org/cl/13418048
2013-09-16 09:49:10 -04:00
Alan Donovan
3f2f9a7e70 go.tools/importer: generalize command-line syntax.
Motivation: pointer analysis tools (like the oracle) want the
user to specify a set of initial packages, like 'go test'.
This change enables the user to specify a set of packages on
the command line using importer.LoadInitialPackages(args).

Each argument is interpreted as either:
- a comma-separated list of *.go source files together
  comprising one non-importable ad-hoc package.
  e.g. "src/pkg/net/http/triv.go" gives us [main].
- an import path, denoting both the imported package
  and its non-importable external test package, if any.
  e.g. "fmt" gives us [fmt, fmt_test].

Current type-checker limitations mean that only the first
import path may contribute tests: multiple packages augmented
by *_test.go files could create import cycles, which 'go test'
avoids by building a separate executable for each one.
That approach is less attractive for static analysis.

Details:  (many files touched, but importer.go is the crux)

importer:
- PackageInfo.Importable boolean indicates whether
  package is importable.
- un-expose Importer.Packages; expose AllPackages() instead.
- CreatePackageFromArgs has become LoadInitialPackages.
- imports() moved to util.go, renamed importsOf().
- InitialPackagesUsage usage message exported to clients.
- the package name for ad-hoc packages now comes from the
  'package' decl, not "main".

ssa.Program:
- added CreatePackages() method
- PackagesByPath un-exposed, renamed 'imported'.
- expose AllPackages and ImportedPackage accessors.

oracle:
- describe: explain and workaround a go/types bug.

Misc:
- Removed various unnecessary error.Error() calls in Printf args.

R=crawshaw
CC=golang-dev
https://golang.org/cl/13579043
2013-09-06 18:13:57 -04:00
Alan Donovan
e2921e188a go.tools/importer: make loading/parsing concurrent.
1. ParseFiles (in util.go) parses each file in its own goroutine.

2. (*Importer).LoadPackage asynchronously prefetches the
   import graph by scanning the imports of each loaded package
   and calling LoadPackage on each one.

   LoadPackage is now thread-safe and idempotent: it uses a
   condition variable per package; the first goroutine to
   request a package becomes responsible for loading it and
   broadcasts to the others (waiting) when it becomes ready.

ssadump runs 34% faster when loading the oracle.

Also, refactorings:
- delete SourceLoader mechanism; just expose go/build.Context directly.
- CreateSourcePackage now also returns an error directly,
  rather than via PackageInfo.Err, since every client wants that.

R=crawshaw
CC=golang-dev
https://golang.org/cl/13509045
2013-09-04 13:15:49 -04:00
Alan Donovan
713699d8ad go.tools: add copyright messages to source files.
R=r
CC=golang-dev
https://golang.org/cl/13305043
2013-08-27 18:49:13 -04:00
Alan Donovan
7ce958b4a5 go.tools/pointer: fix build breakage.
(caused by overlapping pending CLs at commit time).

R=crawshaw
TBR=crawshaw
CC=golang-dev
https://golang.org/cl/12820048
2013-08-22 17:10:06 -04:00
Alan Donovan
6643abb26c go.tools/pointer: inclusion-based pointer analysis for Go.
Suggested reading order:
- doc.go
- api.go, analysis.go, callgraph.go, labels.go
- print.go, util.go
- gen.go
- solve.go
- pointer_test.go, testdata/*
- intrinsics.go (none are implemented yet)

R=dannyb, gri, crawshaw, 0xjnml
CC=golang-dev
https://golang.org/cl/10618043
2013-08-22 12:27:55 -04:00