1
0
mirror of https://github.com/golang/go synced 2024-11-19 14:24:47 -07:00
Commit Graph

18 Commits

Author SHA1 Message Date
Mikio Hara
91c9b0d568 runtime: adjust netpoll panic messages
Change-Id: I34547b057605bb9e1e2227c41867589348560244
Reviewed-on: https://go-review.googlesource.com/41513
Run-TryBot: Mikio Hara <mikioh.mikioh@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2017-04-25 21:39:18 +00:00
Ian Lance Taylor
c05b06a12d os: use poller for file I/O
This changes the os package to use the runtime poller for file I/O
where possible. When a system call blocks on a pollable descriptor,
the goroutine will be blocked on the poller but the thread will be
released to run other goroutines. When using a non-pollable
descriptor, the os package will continue to use thread-blocking system
calls as before.

For example, on GNU/Linux, the runtime poller uses epoll. epoll does
not support ordinary disk files, so they will continue to use blocking
I/O as before. The poller will be used for pipes.

Since this means that the poller is used for many more programs, this
modifies the runtime to only block waiting for the poller if there is
some goroutine that is waiting on the poller. Otherwise, there is no
point, as the poller will never make any goroutine ready. This
preserves the runtime's current simple deadlock detection.

This seems to crash FreeBSD systems, so it is disabled on FreeBSD.
This is issue 19093.

Using the poller on Windows requires opening the file with
FILE_FLAG_OVERLAPPED. We should only do that if we can remove that
flag if the program calls the Fd method. This is issue 19098.

Update #6817.
Update #7903.
Update #15021.
Update #18507.
Update #19093.
Update #19098.

Change-Id: Ia5197dcefa7c6fbcca97d19a6f8621b2abcbb1fe
Reviewed-on: https://go-review.googlesource.com/36800
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-15 19:31:55 +00:00
Ian Lance Taylor
3792db5183 net: refactor poller into new internal/poll package
This will make it possible to use the poller with the os package.

This is a lot of code movement but the behavior is intended to be
unchanged.

Update #6817.
Update #7903.
Update #15021.
Update #18507.

Change-Id: I1413685928017c32df5654ded73a2643820977ae
Reviewed-on: https://go-review.googlesource.com/36799
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2017-02-13 18:36:28 +00:00
Austin Clements
1bc6be6423 runtime: mark several types go:notinheap
This covers basically all sysAlloc'd, persistentalloc'd, and
fixalloc'd types.

Change-Id: I0487c887c2a0ade5e33d4c4c12d837e97468e66b
Reviewed-on: https://go-review.googlesource.com/30941
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-10-15 17:58:20 +00:00
Matthew Dempsky
a03bdc3e6b runtime: eliminate unnecessary type conversions
Automated refactoring produced using github.com/mdempsky/unconvert.

Change-Id: Iacf871a4f221ef17f48999a464ab2858b2bbaa90
Reviewed-on: https://go-review.googlesource.com/20071
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-07 20:53:27 +00:00
Michael Matloob
67faca7d9c runtime: break atomics out into package runtime/internal/atomic
This change breaks out most of the atomics functions in the runtime
into package runtime/internal/atomic. It adds some basic support
in the toolchain for runtime packages, and also modifies linux/arm
atomics to remove the dependency on the runtime's mutex. The mutexes
have been replaced with spinlocks.

all trybots are happy!
In addition to the trybots, I've tested on the darwin/arm64 builder,
on the darwin/arm builder, and on a ppc64le machine.

Change-Id: I6698c8e3cf3834f55ce5824059f44d00dc8e3c2f
Reviewed-on: https://go-review.googlesource.com/14204
Run-TryBot: Michael Matloob <matloob@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-11-10 17:38:04 +00:00
Ainar Garipov
7f9f70e5b6 all: fix misprints in comments
These were found by grepping the comments from the go code and feeding
the output to aspell.

Change-Id: Id734d6c8d1938ec3c36bd94a4dbbad577e3ad395
Reviewed-on: https://go-review.googlesource.com/10941
Reviewed-by: Aamir Khan <syst3m.w0rm@gmail.com>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-06-11 14:18:57 +00:00
Russ Cox
181e26b9fa runtime: replace func-based write barrier skipping with type-based
This CL revises CL 7504 to use explicitly uintptr types for the
struct fields that are going to be updated sometimes without
write barriers. The result is that the fields are now updated *always*
without write barriers.

This approach has two important properties:

1) Now the GC never looks at the field, so if the missing reference
could cause a problem, it will do so all the time, not just when the
write barrier is missed at just the right moment.

2) Now a write barrier never happens for the field, avoiding the
(correct) detection of inconsistent write barriers when GODEBUG=wbshadow=1.

Change-Id: Iebd3962c727c0046495cc08914a8dc0808460e0e
Reviewed-on: https://go-review.googlesource.com/9019
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-20 20:20:09 +00:00
Rick Hudson
41dbcc19ef runtime: Remove write barriers during STW.
The GC assumes that there will be no asynchronous write barriers when
the world is stopped. This keeps the synchronization between write
barriers and the GC simple. However, currently, there are a few places
in runtime code where this assumption does not hold.
The GC stops the world by collecting all Ps, which stops all user Go
code, but small parts of the runtime can run without a P. For example,
the code that releases a P must still deschedule its G onto a runnable
queue before stopping. Similarly, when a G returns from a long-running
syscall, it must run code to reacquire a P.
Currently, this code can contain write barriers. This can lead to the
GC collecting reachable objects if something like the following
sequence of events happens:
1. GC stops the world by collecting all Ps.
2. G #1 returns from a syscall (for example), tries to install a
pointer to object X, and calls greyobject on X.
3. greyobject on G #1 marks X, but does not yet add it to a write
buffer. At this point, X is effectively black, not grey, even though
it may point to white objects.
4. GC reaches X through some other path and calls greyobject on X, but
greyobject does nothing because X is already marked.
5. GC completes.
6. greyobject on G #1 adds X to a work buffer, but it's too late.
7. Objects that were reachable only through X are incorrectly collected.
To fix this, we check the invariant that no asynchronous write
barriers happen when the world is stopped by checking that write
barriers always have a P, and modify all currently known sources of
these writes to disable the write barrier. In all modified cases this
is safe because the object in question will always be reachable via
some other path.

Some of the trace code was turned off, in particular the
code that traces returning from a syscall. The GC assumes
that as far as the heap is concerned the thread is stopped
when it is in a syscall. Upon returning the trace code
must not do any heap writes for the same reasons discussed
above.

Fixes #10098
Fixes #9953
Fixes #9951
Fixes #9884

May relate to #9610 #9771

Change-Id: Ic2e70b7caffa053e56156838eb8d89503e3c0c8a
Reviewed-on: https://go-review.googlesource.com/7504
Reviewed-by: Austin Clements <austin@google.com>
2015-03-17 17:33:21 +00:00
Dmitry Vyukov
919fd24884 runtime: remove runtime frames from stacks in traces
Stip uninteresting bottom and top frames from trace stacks.
This makes both binary and json trace files smaller,
and also makes stacks shorter and more readable in the viewer.

Change-Id: Ib9c80ccc280504f0e235f867f53f1d2652c41583
Reviewed-on: https://go-review.googlesource.com/5523
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
2015-03-10 14:46:15 +00:00
Dmitry Vyukov
5288fadbdc runtime: add tracing of runtime events
Add actual tracing of interesting runtime events.
Part of a larger tracing functionality:
https://docs.google.com/document/u/1/d/1FP5apqzBgr7ahCCgFO-yoVhk4YZrNIDNf9RybngBc14/pub
Full change:
https://codereview.appspot.com/146920043

Change-Id: Icccf54aea54e09350bb698ba6bf11532f9fbe6d3
Reviewed-on: https://go-review.googlesource.com/1451
Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-28 16:35:24 +00:00
Dmitry Vyukov
776aecaf6e runtime: fix spurious deadlock in netpoll
There is a small possibility that runtime deadlocks when netpoll is just activated.
Consider the following scenario:
GOMAXPROCS=1
epfd=-1 (netpoll is not activated yet)
A thread is in findrunnable, sets sched.lastpoll=0, calls netpoll(true),
which returns nil. Now the thread is descheduled for some time.
Then sysmon retakes a P from syscall and calls handoffp.
The "If this is the last running P and nobody is polling network" check in handoffp fails,
since the first thread set sched.lastpoll=0. So handoffp decides that there is already
a thread that polls network and so it calls pidleput.
Now the first thread is scheduled again, finds no work and calls stopm.
There is no thread that polls network and so checkdead reports deadlock.

To fix this, don't set sched.lastpoll=0 when netpoll is not activated.

The deadlock can happen if cgo is disabled (-tag=netgo) and only on program startup
(when netpoll is just activated).

The test is from issue 5216 that lead to addition of the
"If this is the last running P and nobody is polling network" check in handoffp.

Update issue 9576.

Change-Id: I9405f627a4d37bd6b99d5670d4328744aeebfc7a
Reviewed-on: https://go-review.googlesource.com/2750
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-01-14 16:41:17 +00:00
Keith Randall
b2a950bb73 runtime: rename gothrow to throw
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.

This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.

sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go

Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
2014-12-28 06:16:16 +00:00
Russ Cox
7a524a1036 runtime: remove thunk.s
Replace with uses of //go:linkname in Go files, direct use of name in .s files.
The only one that really truly needs a jump is reflect.call; the jump is now
next to the runtime.reflectcall assembly implementations.

Change-Id: Ie7ff3020a8f60a8e4c8645fe236e7883a3f23f46
Reviewed-on: https://go-review.googlesource.com/1962
Reviewed-by: Austin Clements <austin@google.com>
2014-12-23 03:17:22 +00:00
Aram Hăvărneanu
e088e16256 [dev.cc] runtime: convert Solaris port to Go
Memory management was consolitated with the BSD ports, since
it was almost identical.

Assembly thunks are gone, being replaced by the new //go:linkname
feature.

This change supersedes CL 138390043 (runtime: convert solaris
netpoll to Go), which was previously reviewed and tested.

This change is only the first step, the port now builds,
but doesn't run. Binaries fail to exec:

    ld.so.1: 6.out: fatal: 6.out: TLS requirement failure : TLS support is unavailable
    Killed

This seems to happen because binaries don't link with libc.so
anymore. We will have to solve that in a different CL.

Also this change is just a rough translation of the original
C code, cleanup will come in a different CL.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=rsc
R=rsc, dave
CC=golang-codereviews, iant, khr, minux, r, rlh
https://golang.org/cl/174960043
2014-11-13 16:07:10 +01:00
Russ Cox
656be317d0 [dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).

Scalararg and ptrarg are also untyped and therefore error-prone.

Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.

For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.

Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).

The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.

Correct the misnomer by naming the replacement function systemstack.

Fix a few references to "M stack" in code.

The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.

This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)

LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
Russ Cox
b2cdf30eb6 [dev.cc] runtime: convert scheduler from C to Go
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r, daniel.morsing
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/172260043
2014-11-11 17:08:33 -05:00
Russ Cox
c007ce824d build: move package sources from src/pkg to src
Preparation was in CL 134570043.
This CL contains only the effect of 'hg mv src/pkg/* src'.
For more about the move, see golang.org/s/go14nopkg.
2014-09-08 00:08:51 -04:00