To date, the C compilers and Go compilers differed only in how
values were returned from functions. This made it difficult to call
Go from C or C from Go if return values were involved. It also made
assembly called from Go and assembly called from C different.
This CL changes the C compiler to use the Go conventions, passing
results on the stack, after the arguments.
[Exception: this does not apply to C ... functions, because you can't
know where on the stack the arguments end.]
By doing this, the CL makes it possible to rewrite C functions into Go
one at a time, without worrying about which languages call that
function or which languages it calls.
This CL also updates all the assembly files in package runtime to use
the new conventions. Argument references of the form 40(SP) have
been rewritten to the form name+10(FP) instead, and there are now
Go func prototypes for every assembly function called from C or Go.
This means that 'go vet runtime' checks effectively every assembly
function, and go vet's output was used to automate the bulk of the
conversion.
Some functions, like seek and nsec on Plan 9, needed to be rewritten.
Many assembly routines called from C were reading arguments
incorrectly, using MOVL instead of MOVQ or vice versa, especially on
the less used systems like openbsd.
These were found by go vet and have been corrected too.
If we're lucky, this may reduce flakiness on those systems.
Tested on:
darwin/386
darwin/amd64
linux/arm
linux/386
linux/amd64
If this breaks another system, the bug is almost certainly in the
sys_$GOOS_$GOARCH.s file, since the rest of the CL is tested
by the combination of the above systems.
LGTM=dvyukov, iant
R=golang-codereviews, 0intro, dave, alex.brainman, dvyukov, iant
CC=golang-codereviews, josharian, r
https://golang.org/cl/135830043
The runtime has historically held two dedicated values g (current goroutine)
and m (current thread) in 'extern register' slots (TLS on x86, real registers
backed by TLS on ARM).
This CL removes the extern register m; code now uses g->m.
On ARM, this frees up the register that formerly held m (R9).
This is important for NaCl, because NaCl ARM code cannot use R9 at all.
The Go 1 macrobenchmarks (those with per-op times >= 10 µs) are unaffected:
BenchmarkBinaryTree17 5491374955 5471024381 -0.37%
BenchmarkFannkuch11 4357101311 4275174828 -1.88%
BenchmarkGobDecode 11029957 11364184 +3.03%
BenchmarkGobEncode 6852205 6784822 -0.98%
BenchmarkGzip 650795967 650152275 -0.10%
BenchmarkGunzip 140962363 141041670 +0.06%
BenchmarkHTTPClientServer 71581 73081 +2.10%
BenchmarkJSONEncode 31928079 31913356 -0.05%
BenchmarkJSONDecode 117470065 113689916 -3.22%
BenchmarkMandelbrot200 6008923 5998712 -0.17%
BenchmarkGoParse 6310917 6327487 +0.26%
BenchmarkRegexpMatchMedium_1K 114568 114763 +0.17%
BenchmarkRegexpMatchHard_1K 168977 169244 +0.16%
BenchmarkRevcomp 935294971 914060918 -2.27%
BenchmarkTemplate 145917123 148186096 +1.55%
Minux previous reported larger variations, but these were caused by
run-to-run noise, not repeatable slowdowns.
Actual code changes by Minux.
I only did the docs and the benchmarking.
LGTM=dvyukov, iant, minux
R=minux, josharian, iant, dave, bradfitz, dvyukov
CC=golang-codereviews
https://golang.org/cl/109050043