m.gcing has become overloaded to mean "don't preempt this g" in
general. Once the garbage collector is preemptible, the one thing it
*won't* mean is that we're in the garbage collector.
So, rename gcing to "preemptoff" and make it a string giving a reason
that preemption is disabled. gcing was never set to anything but 0 or
1, so we don't have to worry about there being a stack of reasons.
Change-Id: I4337c29e8e942e7aa4f106fc29597e1b5de4ef46
Reviewed-on: https://go-review.googlesource.com/3660
Reviewed-by: Russ Cox <rsc@golang.org>
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.
This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.
sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go
Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
It shouldn't semacquire() inside an acquirem(), the runtime
thinks that means deadlock. It actually isn't a deadlock, but it
looks like it because acquirem() does m.locks++.
Candidate for inclusion in 1.4.1. runtime.Stack with all=true
is pretty unuseable in GOMAXPROCS>1 environment.
fixes#9321
Change-Id: Iac6b664217d24763b9878c20e49229a1ecffc805
Reviewed-on: https://go-review.googlesource.com/1600
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/167540043
Gentraceback may grow the stack.
One of the gentraceback wrappers may grow the stack.
One of the gentraceback callback calls may grow the stack.
Various stack pointers are stored in various stack locations
as type uintptr during the execution of these calls.
If the stack does grow, these stack pointers will not be
updated and will start trying to decode stack memory that
is no longer valid.
It may be possible to change the type of the stack pointer
variables to be unsafe.Pointer, but that's pretty subtle and
may still have problems, even if we catch every last one.
An easier, more obviously correct fix is to require that
gentraceback of the currently running goroutine must run
on the g0 stack, not on the goroutine's own stack.
Not doing this causes faults when you set
StackFromSystem = 1
StackFaultOnFree = 1
The new check in gentraceback will catch future lapses.
The more general problem is calling getcallersp but then
calling a function that might relocate the stack, which would
invalidate the result of getcallersp. Add note to stubs.go
declaration of getcallersp explaining the problem, and
check all existing calls to getcallersp. Most needed fixes.
This affects Callers, Stack, and nearly all the runtime
profiling routines. It does not affect stack copying directly
nor garbage collection.
LGTM=khr
R=khr, bradfitz
CC=golang-codereviews, r
https://golang.org/cl/167060043
Originally traceback was only used for printing the stack
when an unexpected signal came in. In that case, the
initial PC is taken from the signal and should be used
unaltered. For the callers, the PC is the return address,
which might be on the line after the call; we subtract 1
to get to the CALL instruction.
Traceback is now used for a variety of things, and for
almost all of those the initial PC is a return address,
whether from getcallerpc, or gp->sched.pc, or gp->syscallpc.
In those cases, we need to subtract 1 from this initial PC,
but the traceback code had a hard rule "never subtract 1
from the initial PC", left over from the signal handling days.
Change gentraceback to take a flag that specifies whether
we are tracing a trap.
Change traceback to default to "starting with a return PC",
which is the overwhelmingly common case.
Add tracebacktrap, like traceback but starting with a trap PC.
Use tracebacktrap in signal handlers.
Fixes#7690.
LGTM=iant, r
R=r, iant
CC=golang-codereviews
https://golang.org/cl/167810044
It has been failing periodically on Solaris/x64.
Change blockevent so it always records an event if we called
SetBlockProfileRate(1), even if the time delta is negative or zero.
Hopefully this will fix the test on Solaris.
Caveat: I don't actually know what the Solaris problem is, this
is just an educated guess.
LGTM=dave
R=dvyukov, dave
CC=golang-codereviews
https://golang.org/cl/159150043
There are 3 issues:
1. Skip argument of callers is off by 3,
so that all allocations are deep inside of memory profiler.
2. Memory profiling statistics are not updated after runtime.GC.
3. Testing package does not update memory profiling statistics
before capturing the profile.
Also add an end-to-end test.
Fixes#8867.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/148710043