1
0
mirror of https://github.com/golang/go synced 2024-10-06 01:21:21 -06:00
Commit Graph

22 Commits

Author SHA1 Message Date
Russ Cox
363fd1dd1b runtime: move a few atomic fields up
Moving them up makes them properly aligned on 32-bit systems.
There are some odd fields above them right now
(like fixalloc and mutex maybe).

Change-Id: I57851a5bbb2e7cc339712f004f99bb6c0cce0ca5
Reviewed-on: https://go-review.googlesource.com/9889
Reviewed-by: Austin Clements <austin@google.com>
2015-05-11 16:08:57 +00:00
Russ Cox
1635ab7dfe runtime: remove wbshadow mode
The write barrier shadow heap was very useful for
developing the write barriers initially, but it's no longer used,
clunky, and dragging the rest of the implementation down.

The gccheckmark mode will find bugs due to missed barriers
when they result in missed marks; wbshadow mode found the
missed barriers more aggressively, but it required an entire
separate copy of the heap. The gccheckmark mode requires
no extra memory, making it more useful in practice.

Compared to previous CL:
name                   old mean              new mean              delta
BinaryTree17            5.91s × (0.96,1.06)   5.72s × (0.97,1.03)  -3.12% (p=0.000)
Fannkuch11              4.32s × (1.00,1.00)   4.36s × (1.00,1.00)  +0.91% (p=0.000)
FmtFprintfEmpty        89.0ns × (0.93,1.10)  86.6ns × (0.96,1.11)    ~    (p=0.077)
FmtFprintfString        298ns × (0.98,1.06)   283ns × (0.99,1.04)  -4.90% (p=0.000)
FmtFprintfInt           286ns × (0.98,1.03)   283ns × (0.98,1.04)  -1.09% (p=0.032)
FmtFprintfIntInt        498ns × (0.97,1.06)   480ns × (0.99,1.02)  -3.65% (p=0.000)
FmtFprintfPrefixedInt   408ns × (0.98,1.02)   396ns × (0.99,1.01)  -3.00% (p=0.000)
FmtFprintfFloat         587ns × (0.98,1.01)   562ns × (0.99,1.01)  -4.34% (p=0.000)
FmtManyArgs            1.94µs × (0.99,1.02)  1.89µs × (0.99,1.01)  -2.85% (p=0.000)
GobDecode              15.8ms × (0.98,1.03)  15.7ms × (0.99,1.02)    ~    (p=0.251)
GobEncode              12.0ms × (0.96,1.09)  11.8ms × (0.98,1.03)  -1.87% (p=0.024)
Gzip                    648ms × (0.99,1.01)   647ms × (0.99,1.01)    ~    (p=0.688)
Gunzip                  143ms × (1.00,1.01)   143ms × (1.00,1.01)    ~    (p=0.203)
HTTPClientServer       90.3µs × (0.98,1.01)  89.1µs × (0.99,1.02)  -1.30% (p=0.000)
JSONEncode             31.6ms × (0.99,1.01)  31.7ms × (0.98,1.02)    ~    (p=0.219)
JSONDecode              107ms × (1.00,1.01)   111ms × (0.99,1.01)  +3.58% (p=0.000)
Mandelbrot200          6.03ms × (1.00,1.01)  6.01ms × (1.00,1.00)    ~    (p=0.077)
GoParse                6.53ms × (0.99,1.03)  6.54ms × (0.99,1.02)    ~    (p=0.585)
RegexpMatchEasy0_32     161ns × (1.00,1.01)   161ns × (0.98,1.05)    ~    (p=0.948)
RegexpMatchEasy0_1K     541ns × (0.99,1.01)   559ns × (0.98,1.01)  +3.32% (p=0.000)
RegexpMatchEasy1_32     138ns × (1.00,1.00)   137ns × (0.99,1.01)  -0.55% (p=0.001)
RegexpMatchEasy1_1K     887ns × (0.99,1.01)   878ns × (0.99,1.01)  -0.98% (p=0.000)
RegexpMatchMedium_32    253ns × (0.99,1.01)   252ns × (0.99,1.01)  -0.39% (p=0.001)
RegexpMatchMedium_1K   72.8µs × (1.00,1.00)  72.7µs × (1.00,1.00)    ~    (p=0.485)
RegexpMatchHard_32     3.85µs × (1.00,1.01)  3.85µs × (1.00,1.01)    ~    (p=0.283)
RegexpMatchHard_1K      117µs × (1.00,1.01)   117µs × (1.00,1.00)    ~    (p=0.175)
Revcomp                 922ms × (0.97,1.08)   903ms × (0.98,1.05)  -2.15% (p=0.021)
Template                126ms × (0.99,1.01)   126ms × (0.99,1.01)    ~    (p=0.943)
TimeParse               628ns × (0.99,1.01)   634ns × (0.99,1.01)  +0.92% (p=0.000)
TimeFormat              668ns × (0.99,1.01)   698ns × (0.98,1.03)  +4.53% (p=0.000)

It's nice that the microbenchmarks are the ones helped the most,
because those were the ones hurt the most by the conversion from
4-bit to 2-bit heap bitmaps. This CL brings the overall effect of that
process to (compared to CL 9706 patch set 1):

name                   old mean              new mean              delta
BinaryTree17            5.87s × (0.94,1.09)   5.72s × (0.97,1.03)  -2.57% (p=0.011)
Fannkuch11              4.32s × (1.00,1.00)   4.36s × (1.00,1.00)  +0.87% (p=0.000)
FmtFprintfEmpty        89.1ns × (0.95,1.16)  86.6ns × (0.96,1.11)    ~    (p=0.090)
FmtFprintfString        283ns × (0.98,1.02)   283ns × (0.99,1.04)    ~    (p=0.681)
FmtFprintfInt           284ns × (0.98,1.04)   283ns × (0.98,1.04)    ~    (p=0.620)
FmtFprintfIntInt        486ns × (0.98,1.03)   480ns × (0.99,1.02)  -1.27% (p=0.002)
FmtFprintfPrefixedInt   400ns × (0.99,1.02)   396ns × (0.99,1.01)  -0.84% (p=0.001)
FmtFprintfFloat         566ns × (0.99,1.01)   562ns × (0.99,1.01)  -0.80% (p=0.000)
FmtManyArgs            1.91µs × (0.99,1.02)  1.89µs × (0.99,1.01)  -1.10% (p=0.000)
GobDecode              15.5ms × (0.98,1.05)  15.7ms × (0.99,1.02)  +1.55% (p=0.005)
GobEncode              11.9ms × (0.97,1.03)  11.8ms × (0.98,1.03)  -0.97% (p=0.048)
Gzip                    648ms × (0.99,1.01)   647ms × (0.99,1.01)    ~    (p=0.627)
Gunzip                  143ms × (1.00,1.00)   143ms × (1.00,1.01)    ~    (p=0.482)
HTTPClientServer       89.2µs × (0.99,1.02)  89.1µs × (0.99,1.02)    ~    (p=0.740)
JSONEncode             32.3ms × (0.97,1.06)  31.7ms × (0.98,1.02)  -1.95% (p=0.002)
JSONDecode              106ms × (0.99,1.01)   111ms × (0.99,1.01)  +4.22% (p=0.000)
Mandelbrot200          6.02ms × (1.00,1.00)  6.01ms × (1.00,1.00)    ~    (p=0.417)
GoParse                6.57ms × (0.97,1.06)  6.54ms × (0.99,1.02)    ~    (p=0.404)
RegexpMatchEasy0_32     162ns × (1.00,1.00)   161ns × (0.98,1.05)    ~    (p=0.088)
RegexpMatchEasy0_1K     561ns × (0.99,1.02)   559ns × (0.98,1.01)  -0.47% (p=0.034)
RegexpMatchEasy1_32     145ns × (0.95,1.04)   137ns × (0.99,1.01)  -5.56% (p=0.000)
RegexpMatchEasy1_1K     864ns × (0.99,1.04)   878ns × (0.99,1.01)  +1.57% (p=0.000)
RegexpMatchMedium_32    255ns × (0.99,1.04)   252ns × (0.99,1.01)  -1.43% (p=0.001)
RegexpMatchMedium_1K   73.9µs × (0.98,1.04)  72.7µs × (1.00,1.00)  -1.55% (p=0.004)
RegexpMatchHard_32     3.92µs × (0.98,1.04)  3.85µs × (1.00,1.01)  -1.80% (p=0.003)
RegexpMatchHard_1K      120µs × (0.98,1.04)   117µs × (1.00,1.00)  -2.13% (p=0.001)
Revcomp                 936ms × (0.95,1.08)   903ms × (0.98,1.05)  -3.58% (p=0.002)
Template                130ms × (0.98,1.04)   126ms × (0.99,1.01)  -2.98% (p=0.000)
TimeParse               638ns × (0.98,1.05)   634ns × (0.99,1.01)    ~    (p=0.198)
TimeFormat              674ns × (0.99,1.01)   698ns × (0.98,1.03)  +3.69% (p=0.000)

Change-Id: Ia0e9b50b1d75a3c0c7556184cd966305574fe07c
Reviewed-on: https://go-review.googlesource.com/9706
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-05-11 14:55:11 +00:00
Austin Clements
3be3cbd548 runtime: track "scannable" bytes of heap
This tracks the number of scannable bytes in the allocated heap. That
is, bytes that the garbage collector must scan before reaching the
last pointer field in each object.

This will be used to compute a more robust estimate of the GC scan
work.

Change-Id: I1eecd45ef9cdd65b69d2afb5db5da885c80086bb
Reviewed-on: https://go-review.googlesource.com/9695
Reviewed-by: Russ Cox <rsc@golang.org>
2015-05-06 19:40:33 +00:00
Austin Clements
63caec5dee runtime: eliminate one heapBitsForObject from scanobject
scanobject with ptrmask!=nil is only ever called with the base
pointer of a heap object. Currently, scanobject calls
heapBitsForObject, which goes to a great deal of trouble to check
that the pointer points into the heap and to find the base of the
object it points to, both of which are completely unnecessary in
this case.

Replace this call to heapBitsForObject with much simpler logic to
fetch the span and compute the heap bits.

Benchmark results with five runs:

name                                    old mean                new mean        delta
BenchmarkBinaryTree17              9.21s × (0.95,1.02)     8.55s × (0.91,1.03)  -7.16% (p=0.022)
BenchmarkFannkuch11                2.65s × (1.00,1.00)     2.62s × (1.00,1.00)  -1.10% (p=0.000)
BenchmarkFmtFprintfEmpty          73.2ns × (0.99,1.01)    71.7ns × (1.00,1.01)  -1.99% (p=0.004)
BenchmarkFmtFprintfString          302ns × (0.99,1.00)     292ns × (0.98,1.02)  -3.31% (p=0.020)
BenchmarkFmtFprintfInt             281ns × (0.98,1.01)     279ns × (0.96,1.02)  ~ (p=0.596)
BenchmarkFmtFprintfIntInt          482ns × (0.98,1.01)     488ns × (0.95,1.02)  ~ (p=0.419)
BenchmarkFmtFprintfPrefixedInt     382ns × (0.99,1.01)     365ns × (0.96,1.02)  -4.35% (p=0.015)
BenchmarkFmtFprintfFloat           475ns × (0.99,1.01)     472ns × (1.00,1.00)  ~ (p=0.108)
BenchmarkFmtManyArgs              1.89µs × (1.00,1.01)    1.90µs × (0.94,1.02)  ~ (p=0.883)
BenchmarkGobDecode                22.4ms × (0.99,1.01)    21.9ms × (0.92,1.04)  ~ (p=0.332)
BenchmarkGobEncode                24.7ms × (0.98,1.02)    23.9ms × (0.87,1.07)  ~ (p=0.407)
BenchmarkGzip                      397ms × (0.99,1.01)     398ms × (0.99,1.01)  ~ (p=0.718)
BenchmarkGunzip                   96.7ms × (1.00,1.00)    96.9ms × (1.00,1.00)  ~ (p=0.230)
BenchmarkHTTPClientServer         71.5µs × (0.98,1.01)    68.5µs × (0.92,1.06)  ~ (p=0.243)
BenchmarkJSONEncode               46.1ms × (0.98,1.01)    44.9ms × (0.98,1.03)  -2.51% (p=0.040)
BenchmarkJSONDecode               86.1ms × (0.99,1.01)    86.5ms × (0.99,1.01)  ~ (p=0.343)
BenchmarkMandelbrot200            4.12ms × (1.00,1.00)    4.13ms × (1.00,1.00)  +0.23% (p=0.000)
BenchmarkGoParse                  5.89ms × (0.96,1.03)    5.82ms × (0.96,1.04)  ~ (p=0.522)
BenchmarkRegexpMatchEasy0_32       141ns × (0.99,1.01)     142ns × (1.00,1.00)  ~ (p=0.178)
BenchmarkRegexpMatchEasy0_1K       408ns × (1.00,1.00)     392ns × (0.99,1.00)  -3.83% (p=0.000)
BenchmarkRegexpMatchEasy1_32       122ns × (1.00,1.00)     122ns × (1.00,1.00)  ~ (p=0.178)
BenchmarkRegexpMatchEasy1_1K       626ns × (1.00,1.01)     624ns × (0.99,1.00)  ~ (p=0.122)
BenchmarkRegexpMatchMedium_32      202ns × (0.99,1.00)     205ns × (0.99,1.01)  +1.58% (p=0.001)
BenchmarkRegexpMatchMedium_1K     54.4µs × (1.00,1.00)    55.5µs × (1.00,1.00)  +1.86% (p=0.000)
BenchmarkRegexpMatchHard_32       2.68µs × (1.00,1.00)    2.71µs × (1.00,1.00)  +0.97% (p=0.002)
BenchmarkRegexpMatchHard_1K       79.8µs × (1.00,1.01)    80.5µs × (1.00,1.01)  +0.94% (p=0.003)
BenchmarkRevcomp                   590ms × (0.99,1.01)     585ms × (1.00,1.00)  ~ (p=0.066)
BenchmarkTemplate                  111ms × (0.97,1.02)     112ms × (0.99,1.01)  ~ (p=0.201)
BenchmarkTimeParse                 392ns × (1.00,1.00)     385ns × (1.00,1.00)  -1.69% (p=0.000)
BenchmarkTimeFormat                449ns × (0.98,1.01)     448ns × (0.99,1.01)  ~ (p=0.550)

Change-Id: Ie7c3830c481d96c9043e7bf26853c6c1d05dc9f4
Reviewed-on: https://go-review.googlesource.com/9364
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-28 15:22:20 +00:00
Austin Clements
24a7252e25 runtime: finish sweeping before concurrent GC starts
Currently, the concurrent sweep follows a 1:1 rule: when allocation
needs a span, it sweeps a span (likewise, when a large allocation
needs N pages, it sweeps until it frees N pages). This rule worked
well for the STW collector (especially when GOGC==100) because it did
no more sweeping than necessary to keep the heap from growing, would
generally finish sweeping just before GC, and ensured good temporal
locality between sweeping a page and allocating from it.

It doesn't work well with concurrent GC. Since concurrent GC requires
starting GC earlier (sometimes much earlier), the sweep often won't be
done when GC starts. Unfortunately, the first thing GC has to do is
finish the sweep. In the mean time, the mutator can continue
allocating, pushing the heap size even closer to the goal size. This
worked okay with the 7/8ths trigger, but it gets into a vicious cycle
with the GC trigger controller: if the mutator is allocating quickly
and driving the trigger lower, more and more sweep work will be left
to GC; this both causes GC to take longer (allowing the mutator to
allocate more during GC) and delays the start of the concurrent mark
phase, which throws off the GC controller's statistics and generally
causes it to push the trigger even lower.

As an example of a particularly bad case, the garbage benchmark with
GOMAXPROCS=4 and -benchmem 512 (MB) spends the first 0.4-0.8 seconds
of each GC cycle sweeping, during which the heap grows by between
109MB and 252MB.

To fix this, this change replaces the 1:1 sweep rule with a
proportional sweep rule. At the end of GC, GC knows exactly how much
heap allocation will occur before the next concurrent GC as well as
how many span pages must be swept. This change computes this "sweep
ratio" and when the mallocgc asks for a span, the mcentral sweeps
enough spans to bring the swept span count into ratio with the
allocated byte count.

On the benchmark from above, this entirely eliminates sweeping at the
beginning of GC, which reduces the time between startGC readying the
GC goroutine and GC stopping the world for sweep termination to ~100µs
during which the heap grows at most 134KB.

Change-Id: I35422d6bba0c2310d48bb1f8f30a72d29e98c1af
Reviewed-on: https://go-review.googlesource.com/8921
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-21 15:35:46 +00:00
Rick Hudson
899a4ad47e runtime: Speed up heapBitsForObject
Optimized heapBitsForObject by special casing
objects whose size is a power of two. When a
span holding such objects is initialized I
added a mask that when &ed with an interior pointer
results in the base of the pointer. For the garbage
benchmark this resulted in CPU_CLK_UNHALTED in
heapBitsForObject going from 7.7% down to 5.9%
of the total, INST_RETIRED went from 12.2 -> 8.7.

Here are the benchmarks that were at lease plus or minus 1%.

benchmark                          old ns/op      new ns/op      delta
BenchmarkFmtFprintfString          249            221            -11.24%
BenchmarkFmtFprintfInt             247            223            -9.72%
BenchmarkFmtFprintfEmpty           76.5           69.6           -9.02%
BenchmarkBinaryTree17              4106631412     3744550160     -8.82%
BenchmarkFmtFprintfFloat           424            399            -5.90%
BenchmarkGoParse                   4484421        4242115        -5.40%
BenchmarkGobEncode                 8803668        8449107        -4.03%
BenchmarkFmtManyArgs               1494           1436           -3.88%
BenchmarkGobDecode                 10431051       10032606       -3.82%
BenchmarkFannkuch11                2591306713     2517400464     -2.85%
BenchmarkTimeParse                 361            371            +2.77%
BenchmarkJSONDecode                70620492       68830357       -2.53%
BenchmarkRegexpMatchMedium_1K      54693          53343          -2.47%
BenchmarkTemplate                  90008879       91929940       +2.13%
BenchmarkTimeFormat                380            387            +1.84%
BenchmarkRegexpMatchEasy1_32       111            113            +1.80%
BenchmarkJSONEncode                21359159       21007583       -1.65%
BenchmarkRegexpMatchEasy1_1K       603            613            +1.66%
BenchmarkRegexpMatchEasy0_32       127            129            +1.57%
BenchmarkFmtFprintfIntInt          399            393            -1.50%
BenchmarkRegexpMatchEasy0_1K       373            378            +1.34%

Change-Id: I78e297161026f8b5cc7507c965fd3e486f81ed29
Reviewed-on: https://go-review.googlesource.com/8980
Reviewed-by: Austin Clements <austin@google.com>
2015-04-20 21:39:06 +00:00
Michael Hudson-Doyle
ab4df700b8 runtime: merge slice and sliceStruct
By removing type slice, renaming type sliceStruct to type slice and
whacking until it compiles.

Has a pleasing net reduction of conversions.

Fixes #10188

Change-Id: I77202b8df637185b632fd7875a1fdd8d52c7a83c
Reviewed-on: https://go-review.googlesource.com/8770
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-15 16:59:49 +00:00
Austin Clements
69001e404e runtime: fix freed page accounting in mHeap_ReclaimList
mHeap_ReclaimList is asked to reclaim at least npages pages, but it
counts the number of spans reclaimed, not the number of pages
reclaimed. The number of spans reclaimed is strictly larger than the
number of pages, so this is not strictly wrong, but it is forcing more
reclamation than was intended by the caller, which delays large
allocations.

Fix this by increasing the count by the number of pages in the swept
span, rather than just increasing it by 1.

Fixes #9048.

Change-Id: I5ae364a9837a6012e68fcd431bba000340cfd50c
Reviewed-on: https://go-review.googlesource.com/8920
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-04-14 20:55:14 +00:00
Michael Hudson-Doyle
fae4a128cb runtime, reflect: support multiple moduledata objects
This changes all the places that consult themoduledata to consult a
linked list of moduledata objects, as will be necessary for
-linkshared to work.

Obviously, as there is as yet no way of adding moduledata objects to
this list, all this change achieves right now is wasting a few
instructions here and there.

Change-Id: I397af7f60d0849b76aaccedf72238fe664867051
Reviewed-on: https://go-review.googlesource.com/8231
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-10 04:51:42 +00:00
Austin Clements
d7e0ad4b82 runtime: introduce heap_live; replace use of heap_alloc in GC
Currently there are two main consumers of memstats.heap_alloc:
updatememstats (aka ReadMemStats) and shouldtriggergc.

updatememstats recomputes heap_alloc from the ground up, so we don't
need to keep heap_alloc up to date for it. shouldtriggergc wants to
know how many bytes were marked by the previous GC plus how many bytes
have been allocated since then, but this *isn't* what heap_alloc
tracks. heap_alloc also includes objects that are not marked and
haven't yet been swept.

Introduce a new memstat called heap_live that actually tracks what
shouldtriggergc wants to know and stop keeping heap_alloc up to date.

Unlike heap_alloc, heap_live follows a simple sawtooth that drops
during each mark termination and increases monotonically between GCs.
heap_alloc, on the other hand, has much more complicated behavior: it
may drop during sweep termination, slowly decreases from background
sweeping between GCs, is roughly unaffected by allocation as long as
there are unswept spans (because we sweep and allocate at the same
rate), and may go up after background sweeping is done depending on
the GC trigger.

heap_live simplifies computing next_gc and using it to figure out when
to trigger garbage collection. Currently, we guess next_gc at the end
of a cycle and update it as we sweep and get a better idea of how much
heap was marked. Now, since we're directly tracking how much heap is
marked, we can directly compute next_gc.

This also corrects bugs that could cause us to trigger GC early.
Currently, in any case where sweep termination actually finds spans to
sweep, heap_alloc is an overestimation of live heap, so we'll trigger
GC too early. heap_live, on the other hand, is unaffected by sweeping.

Change-Id: I1f96807b6ed60d4156e8173a8e68745ffc742388
Reviewed-on: https://go-review.googlesource.com/8389
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-06 21:28:13 +00:00
Keith Randall
cd5b144d98 runtime,reflect,cmd/internal/gc: Fix comments referring to .c/.h files
Everything has moved to Go, but comments still refer to .c/.h files.
Fix all of those up, at least for these three directories.

Fixes #10138

Change-Id: Ie5efe89b247841e0b3f82aac5256b2c606ef67dc
Reviewed-on: https://go-review.googlesource.com/7431
Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-11 20:19:43 +00:00
Russ Cox
9feb24f3ed runtime: use multiply instead of divide in heapBitsForObject
These benchmarks show the effect of the combination of this change
and Rick's pending CL 6665. Code with interior pointers is helped
much more than code without, but even code without doesn't suffer
too badly.

benchmark                          old ns/op      new ns/op      delta
BenchmarkBinaryTree17              6989407768     6851728175     -1.97%
BenchmarkFannkuch11                4416250775     4405762558     -0.24%
BenchmarkFmtFprintfEmpty           134            130            -2.99%
BenchmarkFmtFprintfString          491            402            -18.13%
BenchmarkFmtFprintfInt             430            420            -2.33%
BenchmarkFmtFprintfIntInt          748            663            -11.36%
BenchmarkFmtFprintfPrefixedInt     602            534            -11.30%
BenchmarkFmtFprintfFloat           728            699            -3.98%
BenchmarkFmtManyArgs               2528           2507           -0.83%
BenchmarkGobDecode                 17448191       17749756       +1.73%
BenchmarkGobEncode                 14579824       14370183       -1.44%
BenchmarkGzip                      656489990      652669348      -0.58%
BenchmarkGunzip                    141254147      141099278      -0.11%
BenchmarkHTTPClientServer          94111          93738          -0.40%
BenchmarkJSONEncode                36305013       36696440       +1.08%
BenchmarkJSONDecode                124652000      128176454      +2.83%
BenchmarkMandelbrot200             6009333        5997093        -0.20%
BenchmarkGoParse                   7651583        7623494        -0.37%
BenchmarkRegexpMatchEasy0_32       213            213            +0.00%
BenchmarkRegexpMatchEasy0_1K       511            494            -3.33%
BenchmarkRegexpMatchEasy1_32       186            187            +0.54%
BenchmarkRegexpMatchEasy1_1K       1834           1827           -0.38%
BenchmarkRegexpMatchMedium_32      427            412            -3.51%
BenchmarkRegexpMatchMedium_1K      154841         153086         -1.13%
BenchmarkRegexpMatchHard_32        7473           7478           +0.07%
BenchmarkRegexpMatchHard_1K        233587         232272         -0.56%
BenchmarkRevcomp                   918797689      944528032      +2.80%
BenchmarkTemplate                  167665081      167773121      +0.06%
BenchmarkTimeParse                 631            636            +0.79%
BenchmarkTimeFormat                672            666            -0.89%

Change-Id: Ia923de3cdb3993b640fe0a02cbe2c7babc16f32c
Reviewed-on: https://go-review.googlesource.com/6782
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2015-03-04 17:46:47 +00:00
Dave Cheney
f9cc72ccfe runtime: disable scavenger on 64k page size kernels
Update #9993

If the physical page size of the machine is larger than the logical
heap size, for example 8k logical, 64k physical, then madvise(2) will
round up the requested amount to a 64k boundary and may discard pages
close to the page being madvised.

This patch disables the scavenger in these situations, which at the moment
is only ppc64 and ppc64le systems. NaCl also uses a 64k page size, but
it's not clear if it is affected by this problem.

Change-Id: Ib897f8d3df5bd915ddc0b510f2fd90a30ef329ca
Reviewed-on: https://go-review.googlesource.com/6091
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
2015-02-26 20:11:17 +00:00
Keith Randall
6d1ebeb527 runtime: handle holes in the heap
We need to distinguish pointers to free spans, which indicate bugs in
our pointer analysis, from pointers to never-in-the-heap spans, which
can legitimately arise from sysAlloc/mmap/etc.  This normally isn't a
problem because the heap is contiguous, but in some situations (32
bit, particularly) the heap must grow around an already allocated
region.

The bad pointer test is disabled so this fix doesn't actually do
anything, but it removes one barrier from reenabling it.

Fixes #9872.

Change-Id: I0a92db4d43b642c58d2b40af69c906a8d9777f88
Reviewed-on: https://go-review.googlesource.com/5780
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
2015-02-25 21:07:10 +00:00
Russ Cox
2b655c0b92 runtime: tidy GC driver
Change-Id: I0da26e89ae73272e49e82c6549c774e5bc97f64c
Reviewed-on: https://go-review.googlesource.com/5331
Reviewed-by: Austin Clements <austin@google.com>
2015-02-20 17:00:22 +00:00
Russ Cox
484f801ff4 runtime: reorganize memory code
Move code from malloc1.go, malloc2.go, mem.go, mgc0.go into
appropriate locations.

Factor mgc.go into mgc.go, mgcmark.go, mgcsweep.go, mstats.go.

A lot of this code was in certain files because the right place was in
a C file but it was written in Go, or vice versa. This is one step toward
making things actually well-organized again.

Change-Id: I6741deb88a7cfb1c17ffe0bcca3989e10207968f
Reviewed-on: https://go-review.googlesource.com/5300
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-02-19 20:17:01 +00:00
Dmitry Vyukov
e604c6e293 runtime: fix span unusedsince setup
Update #8832

This is probably not the root cause of the issue.
Resolve TODO about setting unusedsince on a wrong span.

Change-Id: I69c87e3d93cb025e3e6fa80a8cffba6ad6ad1395
Reviewed-on: https://go-review.googlesource.com/4390
Reviewed-by: Keith Randall <khr@golang.org>
2015-02-11 10:27:56 +00:00
Dmitry Vyukov
5288fadbdc runtime: add tracing of runtime events
Add actual tracing of interesting runtime events.
Part of a larger tracing functionality:
https://docs.google.com/document/u/1/d/1FP5apqzBgr7ahCCgFO-yoVhk4YZrNIDNf9RybngBc14/pub
Full change:
https://codereview.appspot.com/146920043

Change-Id: Icccf54aea54e09350bb698ba6bf11532f9fbe6d3
Reviewed-on: https://go-review.googlesource.com/1451
Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-28 16:35:24 +00:00
Keith Randall
b2a950bb73 runtime: rename gothrow to throw
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.

This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.

sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go

Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
2014-12-28 06:16:16 +00:00
Rick Hudson
8cfb084534 [dev.garbage] runtime: Turn concurrent GC on by default. Avoid write barriers for GC internal structures such as free lists.
LGTM=rsc
R=rsc
CC=golang-codereviews, rsc
https://golang.org/cl/179000043
2014-11-20 12:08:13 -05:00
Russ Cox
656be317d0 [dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).

Scalararg and ptrarg are also untyped and therefore error-prone.

Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.

For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.

Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).

The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.

Correct the misnomer by naming the replacement function systemstack.

Fix a few references to "M stack" in code.

The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.

This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)

LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
Russ Cox
1e2d2f0947 [dev.cc] runtime: convert memory allocator and garbage collector to Go
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/167540043
2014-11-11 17:05:02 -05:00