The implementation is the same assembly (or Go) routine.
Change-Id: Ib937c461c24ad2d5be9b692b4eed40d9eb031412
Reviewed-on: https://go-review.googlesource.com/2828
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
runtime.rtype was a copy of reflect.rtype - update script to use that directly.
Introduces a basic test which will skip on systems without appropriate GDB.
Fixes#9326
Change-Id: I6ec74e947bd2e1295492ca34b3a8c1b49315a8cb
Reviewed-on: https://go-review.googlesource.com/2821
Reviewed-by: Ian Lance Taylor <iant@golang.org>
6g does not implement dead code elimination for const switches like it
does for const if statements, so the undefined raiseproc() function
was resulting in a link-time failure.
Change-Id: Ie4fcb3716cb4fe6e618033071df9de545ab3e0af
Reviewed-on: https://go-review.googlesource.com/2830
Reviewed-by: Russ Cox <rsc@golang.org>
printf, vprintf, snprintf, gc_m_ptr, gc_g_ptr, gc_itab_ptr, gc_unixnanotime.
These were called from C.
There is no more C.
Now that vprintf is gone, delete roundup, which is unsafe (see CL 2814).
Change-Id: If8a7b727d497ffa13165c0d3a1ed62abc18f008c
Reviewed-on: https://go-review.googlesource.com/2824
Reviewed-by: Austin Clements <austin@google.com>
Moving the "don't really preempt" check up earlier in the function
introduced a race where gp.stackguard0 might change between
the early check and the later one. Since the later one is missing the
"don't really preempt" logic, it could decide to preempt incorrectly.
Pull the result of the check into a local variable and use an atomic
to access stackguard0, to eliminate the race.
I believe this will fix the broken OS X and Solaris builders.
Change-Id: I238350dd76560282b0c15a3306549cbcf390dbff
Reviewed-on: https://go-review.googlesource.com/2823
Reviewed-by: Austin Clements <austin@google.com>
Since CL 2750, the build is broken on Plan 9,
because a new function netpollinited was added
and called from findrunnable in proc1.go.
However, netpoll is not implemented on Plan 9.
Thus, we define netpollinited in netpoll_stub.go.
Fixes#9590
Change-Id: I0895607b86cbc7e94c1bfb2def2b1a368a8efbe6
Reviewed-on: https://go-review.googlesource.com/2759
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
These were fixed in my local commit,
but I forgot that the web Submit button can't see that.
Change-Id: Iec3a70ce3ccd9db2a5394ae2da0b293e45ac2fb5
Reviewed-on: https://go-review.googlesource.com/2822
Reviewed-by: Russ Cox <rsc@golang.org>
During all.bash I got a crash in the GOMAXPROCS=2 runtime test reporting
that the write barrier in the assignment 'c.tiny = add(x, size)' had been
given a pointer pointing into an unexpected span. The problem is that
the tiny allocation was at the end of a span and c.tiny was now pointing
to the end of the allocation and therefore to the end of the span aka
the beginning of the next span.
Rewrite tinyalloc not to do that.
More generally, it's not okay to call add(p, size) unless you know that p
points at > (not just >=) size bytes. Similarly, pretty much any call to
roundup doesn't know how much space p points at, so those are all
broken.
Rewrite persistentalloc not to use add(p, totalsize) and not to use roundup.
There is only one use of roundup left, in vprintf, which is dead code.
I will remove that code and roundup itself in a followup CL.
Change-Id: I211e307d1a656d29087b8fd40b2b71010722fb4a
Reviewed-on: https://go-review.googlesource.com/2814
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
It could happen that mp.printlock++ happens, then on entry to lock,
the goroutine is preempted and then rescheduled onto another m
for the actual call to lock. Now the lock and the printlock++ have
happened on different m's. This can lead to printlock not being
unlocked, which either gives a printing deadlock or a crash when
the goroutine reschedules, because m.locks > 0.
Change-Id: Ib0c08740e1b53de3a93f7ebf9b05f3dceff48b9f
Reviewed-on: https://go-review.googlesource.com/2819
Reviewed-by: Rick Hudson <rlh@golang.org>
Mostly this is using uint32 instead of int32 for unsigned values
like instruction encodings or float32 bit representations,
removal of ternary operations, and removal of #defines.
Delete sched9.c, because it is not compiled (it is still in the history
if we ever need it).
Change-Id: I68579cfea679438a27a80416727a9af932b088ae
Reviewed-on: https://go-review.googlesource.com/2658
Reviewed-by: Austin Clements <austin@google.com>
Normally, a panic/throw only shows the thread stack for the current thread
and all paused goroutines. Goroutines running on other threads, or other threads
running on their system stacks, are opaque. Change that when GODEBUG=crash,
by passing a SIGQUIT around to all the threads when GODEBUG=crash.
If this works out reasonably well, we might make the SIGQUIT relay part of
the standard panic/throw death, perhaps eliding idle m's.
Change-Id: If7dd354f7f3a6e326d17c254afcf4f7681af2f8b
Reviewed-on: https://go-review.googlesource.com/2811
Reviewed-by: Rick Hudson <rlh@golang.org>
There is a small possibility that runtime deadlocks when netpoll is just activated.
Consider the following scenario:
GOMAXPROCS=1
epfd=-1 (netpoll is not activated yet)
A thread is in findrunnable, sets sched.lastpoll=0, calls netpoll(true),
which returns nil. Now the thread is descheduled for some time.
Then sysmon retakes a P from syscall and calls handoffp.
The "If this is the last running P and nobody is polling network" check in handoffp fails,
since the first thread set sched.lastpoll=0. So handoffp decides that there is already
a thread that polls network and so it calls pidleput.
Now the first thread is scheduled again, finds no work and calls stopm.
There is no thread that polls network and so checkdead reports deadlock.
To fix this, don't set sched.lastpoll=0 when netpoll is not activated.
The deadlock can happen if cgo is disabled (-tag=netgo) and only on program startup
(when netpoll is just activated).
The test is from issue 5216 that lead to addition of the
"If this is the last running P and nobody is polling network" check in handoffp.
Update issue 9576.
Change-Id: I9405f627a4d37bd6b99d5670d4328744aeebfc7a
Reviewed-on: https://go-review.googlesource.com/2750
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The old name was too ambiguous (is it a verb? is it a predicate? is
it a constant?) and too close to debug.gccheckmark. Hopefully the new
name conveys that this variable indicates that we are currently doing
mark checking.
Change-Id: I031cd48b0906cdc7774f5395281d3aeeb8ef3ec9
Reviewed-on: https://go-review.googlesource.com/2656
Reviewed-by: Rick Hudson <rlh@golang.org>
1) Move non-preemption check even earlier in newstack.
This avoids a few priority inversion problems.
2) Always use atomic operations to update bitmap for 1-word objects.
This avoids lost mark bits during concurrent GC.
3) Stop using work.nproc == 1 as a signal for being single-threaded.
The concurrent GC runs with work.nproc == 1 but other procs are
running mutator code.
The use of work.nproc == 1 in getfull *is* safe, but remove it anyway,
since it is saving only a single atomic operation per GC round.
Fixes#9225.
Change-Id: I24134f100ad592ea8cb59efb6a54f5a1311093dc
Reviewed-on: https://go-review.googlesource.com/2745
Reviewed-by: Rick Hudson <rlh@golang.org>
Make auxv parsing in linux/arm less of a special case.
* rename setup_auxv to sysargs
* exclude linux/arm from vdso_none.go
* move runtime.checkarm after runtime.sysargs so arm specific
values are properly initialised
Change-Id: I1ca7f5844ad5a162337ff061a83933fc9a2b5ff6
Reviewed-on: https://go-review.googlesource.com/2681
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
In the previous sandbox implementation we read all sandboxed output
from standard output, and so all fake time writes were made to
standard output. Now we have a more sophisticated sandbox server
(see golang.org/x/playground/sandbox) that is capable of recording
both standard output and standard error, so allow fake time writes to
go to either file descriptor.
Change-Id: I79737deb06fd8e0f28910f21f41bd3dc1726781e
Reviewed-on: https://go-review.googlesource.com/2713
Reviewed-by: Minux Ma <minux@golang.org>
Previously, gccheckmark could only be enabled or disabled by calling
runtime.GCcheckmarkenable/GCcheckmarkdisable. This was a necessary
hack because GODEBUG was broken.
Now that GODEBUG works again, move control over gccheckmark to a
GODEBUG variable and remove these runtime functions. Currently,
gccheckmark is enabled by default (and will probably remain so for
much of the 1.5 development cycle).
Change-Id: I2bc6f30c21b795264edf7dbb6bd7354b050673ab
Reviewed-on: https://go-review.googlesource.com/2603
Reviewed-by: Rick Hudson <rlh@golang.org>
Also fix one unaligned stack size for nacl that is caught
by this change.
Fixes#9539.
Change-Id: Ib696a573d3f1f9bac7724f3a719aab65a11e04d3
Reviewed-on: https://go-review.googlesource.com/2600
Reviewed-by: Keith Randall <khr@golang.org>
Recognize loops of the form
for i := range a {
a[i] = zero
}
in which the evaluation of a is free from side effects.
Replace these loops with calls to memclr.
This occurs in the stdlib in 18 places.
The motivating example is clearing a byte slice:
benchmark old ns/op new ns/op delta
BenchmarkGoMemclr5 3.31 3.26 -1.51%
BenchmarkGoMemclr16 13.7 3.28 -76.06%
BenchmarkGoMemclr64 50.8 4.14 -91.85%
BenchmarkGoMemclr256 157 6.02 -96.17%
Update #5373.
Change-Id: I99d3e6f5f268e8c6499b7e661df46403e5eb83e4
Reviewed-on: https://go-review.googlesource.com/2520
Reviewed-by: Keith Randall <khr@golang.org>
Fixes#9541.
Change-Id: I5d659ad50d7c3d1c92ed9feb86cda4c1a6e62054
Reviewed-on: https://go-review.googlesource.com/2584
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Random is bad, it can block and prevent binaries from starting.
Use urandom instead. We'd rather have bad random bits than no
random bits.
Change-Id: I360e1cb90ace5518a1b51708822a1dae27071ebd
Reviewed-on: https://go-review.googlesource.com/2582
Reviewed-by: Dave Cheney <dave@cheney.net>
Reviewed-by: Minux Ma <minux@golang.org>
In 32-bit worlds, 8-byte objects are only aligned to 4-byte boundaries.
Change-Id: I91469a9a67b1ee31dd508a4e105c39c815ecde58
Reviewed-on: https://go-review.googlesource.com/2581
Reviewed-by: Keith Randall <khr@golang.org>
For a non-zero-sized struct with a final zero-sized field,
add a byte to the size (before rounding to alignment). This
change ensures that taking the address of the zero-sized field
will not incorrectly leak the following object in memory.
reflect.funcLayout also needs this treatment.
Fixes#9401
Change-Id: I1dc503dc5af4ca22c8f8c048fb7b4541cc957e0f
Reviewed-on: https://go-review.googlesource.com/2452
Reviewed-by: Russ Cox <rsc@golang.org>
run GC in its own background goroutine making the
caller runnable if resources are available. This is
critical in single goroutine applications.
Allow goroutines that allocate a lot to help out
the GC and in doing so throttle their own allocation.
Adjust test so that it only detects that a GC is run
during init calls and not whether the GC is memory
efficient. Memory efficiency work will happen later
in 1.5.
Change-Id: I4306f5e377bb47c69bda1aedba66164f12b20c2b
Reviewed-on: https://go-review.googlesource.com/2349
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This improves the printing of GC times to be both more human-friendly
and to provide enough information for the construction of MMU curves
and other statistics. The new times look like:
GC: #8 72413852ns @143036695895725 pause=622900 maxpause=427037 goroutines=11 gomaxprocs=4
GC: sweep term: 190584ns max=190584 total=275001 procs=4
GC: scan: 260397ns max=260397 total=902666 procs=1
GC: install wb: 5279ns max=5279 total=18642 procs=4
GC: mark: 71530555ns max=71530555 total=186694660 procs=1
GC: mark term: 427037ns max=427037 total=1691184 procs=4
This prints gomaxprocs and the number of procs used in each phase for
the benefit of analyzing mutator utilization during concurrent phases.
This also means the analysis doesn't have to hard-code which phases
are STW.
This prints the absolute start time only for the GC cycle. The other
start times can be derived from the phase durations. This declutters
the view for humans readers and doesn't pose any additional complexity
for machine readers.
This removes the confusing "cycle" terminology. Instead, this places
the phase duration after the phase name and adds a "ns" unit, which
both makes it implicitly clear that this is the duration of that phase
and indicates the units of the times.
This adds a "GC:" prefix to all lines for easier identification.
Finally, this generally cleans up the code as well as the placement of
spaces in the output and adds print locking so the statistics blocks
are never interrupted by other prints.
Change-Id: Ifd056db83ed1b888de7dfa9a8fc5732b01ccc631
Reviewed-on: https://go-review.googlesource.com/2542
Reviewed-by: Rick Hudson <rlh@golang.org>
The equal algorithm used to take the size
equal(p, q *T, size uintptr) bool
With this change, it does not
equal(p, q *T) bool
Similarly for the hash algorithm.
The size is rarely used, as most equal functions know the size
of the thing they are comparing. For instance f32equal already
knows its inputs are 4 bytes in size.
For cases where the size is not known, we allocate a closure
(one for each size needed) that points to an assembly stub that
reads the size out of the closure and calls generic code that
has a size argument.
Reduces the size of the go binary by 0.07%. Performance impact
is not measurable.
Change-Id: I6e00adf3dde7ad2974adbcff0ee91e86d2194fec
Reviewed-on: https://go-review.googlesource.com/2392
Reviewed-by: Russ Cox <rsc@golang.org>
Use a lookup table to find the function which contains a pc. It is
faster than the old binary search. findfunc is used primarily for
stack copying and garbage collection.
benchmark old ns/op new ns/op delta
BenchmarkStackCopy 294746596 255400980 -13.35%
(findfunc is one of several tasks done by stack copy, the findfunc
time itself is about 2.5x faster.)
The lookup table is built at link time. The table grows the binary
size by about 0.5% of the text segment.
We impose a lower limit of 16 bytes on any function, which should not
have much of an impact. (The real constraint required is <=256
functions in every 4096 bytes, but 16 bytes/function is easier to
implement.)
Change-Id: Ic315b7a2c83e1f7203cd2a50e5d21a822e18fdca
Reviewed-on: https://go-review.googlesource.com/2097
Reviewed-by: Russ Cox <rsc@golang.org>
This implements support for calls to and from C in the ppc64 C ABI, as
well as supporting functionality such as an entry point from the
dynamic linker.
Change-Id: I68da6df50d5638cb1a3d3fef773fb412d7bf631a
Reviewed-on: https://go-review.googlesource.com/2009
Reviewed-by: Russ Cox <rsc@golang.org>
Cgo will need this for calls from C to Go and for handling signals
that may occur in C code.
Change-Id: I50cc4caf17cd142bff501e7180a1e27721463ada
Reviewed-on: https://go-review.googlesource.com/2008
Reviewed-by: Russ Cox <rsc@golang.org>
Cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
will be allocated directly. There is no point in cacheing
32KB+ stacks as we ask for and return 32KB at a time
from the allocator.
Note that the minimum stack is 8K on windows/64bit and 4K on
windows/32bit and plan9. For these os/arch combinations,
the number of stack orders is less so that we have the same
maximum cached size.
Fixes#9045
Change-Id: Ia4195dd1858fb79fc0e6a91ae29c374d28839e44
Reviewed-on: https://go-review.googlesource.com/2098
Reviewed-by: Russ Cox <rsc@golang.org>
The ones at the end of M and G are just used to compute
their size for use in assembly. Generate the size explicitly.
The one at the end of itab is variable-sized, and at least one.
The ones at the end of interfacetype and uncommontype are not
needed, as the preceding slice references them (the slice was
originally added for use by reflect?).
The one at the end of stackmap is already accessed correctly,
and the runtime never allocates one.
Update #9401
Change-Id: Ia75e3aaee38425f038c506868a17105bd64c712f
Reviewed-on: https://go-review.googlesource.com/2420
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Fold in some startup randomness to make the hash vary across
different runs. This helps prevent attackers from choosing
keys that all map to the same bucket.
Also, reorganize the hash a bit. Move the *m1 multiply to after
the xor of the current hash and the message. For hash quality
it doesn't really matter, but for DDOS resistance it helps a lot
(any processing done to the message before it is merged with the
random seed is useless, as it is easily inverted by an attacker).
Update #9365
Change-Id: Ib19968168e1bbc541d1d28be2701bb83e53f1e24
Reviewed-on: https://go-review.googlesource.com/2344
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This CL only fixes the build, there are two failing tests:
RaceMapBigValAccess1 and RaceMapBigValAccess2
in runtime/race tests. I haven't investigated why yet.
Updates #9516.
Change-Id: If5bd2f0bee1ee45b1977990ab71e2917aada505f
Reviewed-on: https://go-review.googlesource.com/2401
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
sysReserve doesn't actually reserve the full amount requested on
64-bit systems, because of problems with ulimit. Instead it checks
that it can get the first 64 kB and assumes it can grab the rest as
needed. This doesn't work well with the "let the kernel pick an address"
mode, so don't do that. Pick a high address instead.
Change-Id: I4de143a0e6fdeb467fa6ecf63dcd0c1c1618a31c
Reviewed-on: https://go-review.googlesource.com/2345
Reviewed-by: Rick Hudson <rlh@golang.org>
The line 'mp.schedlink = mnext' has an implicit write barrier call,
which needs a valid g. Move it above the setg(nil).
Change-Id: If3e86c948e856e10032ad89f038bf569659300e0
Reviewed-on: https://go-review.googlesource.com/2347
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
First, call clearcheckmarks immediately after changing checkmark,
so that there is less time when the checkmark flag and the bitmap
are inconsistent. The tiny gap between the two lines is fine, because
the world is stopped. Before, the gap was much larger and included
such code as "go bgsweep()", which allocated.
Second, modify gcphase only when the world is stopped.
As written, gcscan_m was changing gcphase from 0 to GCscan
and back to 0 while other goroutines were running.
Another goroutine running at the same time might decide to
sleep, see GCscan, call gcphasework, and start "helping" by
scanning its stack. That's fine, except that if gcphase flips back
to 0 as the goroutine calls scanblock, it will start draining the
work buffers prematurely.
Both of these were found wbshadow=2 (and a lot of hard work).
Eventually that will run automatically, but right now it still
doesn't quite work for all.bash, due to mmap conflicts with
pthread-created threads.
Change-Id: I99aa8210cff9c6e7d0a1b62c75be32a23321897b
Reviewed-on: https://go-review.googlesource.com/2340
Reviewed-by: Rick Hudson <rlh@golang.org>
Use typedmemmove, typedslicecopy, and adjust reflect.call
to execute the necessary write barriers.
Found with GODEBUG=wbshadow=2 mode.
Eventually that will run automatically, but right now
it still detects other missing write barriers.
Change-Id: Iec5b5b0c1be5589295e28e5228e37f1a92e07742
Reviewed-on: https://go-review.googlesource.com/2312
Reviewed-by: Keith Randall <khr@golang.org>
A side effect of this change is that when assertI2T writes to the
memory for the T being extracted, it can use typedmemmove
for write barriers.
There are other ways we could have done this, but this one
finishes a TODO in package runtime.
Found with GODEBUG=wbshadow=2 mode.
Eventually that will run automatically, but right now
it still detects other missing write barriers.
Change-Id: Icbc8aabfd8a9b1f00be2e421af0e3b29fa54d01e
Reviewed-on: https://go-review.googlesource.com/2279
Reviewed-by: Keith Randall <khr@golang.org>
Found with GODEBUG=wbshadow=2 mode.
Eventually that will run automatically, but right now
it still detects other missing write barriers.
Change-Id: Iea83d693480c2f3008b4e80d55821acff65970a6
Reviewed-on: https://go-review.googlesource.com/2277
Reviewed-by: Keith Randall <khr@golang.org>
Preparation for replacing many memmove calls in runtime
with typedmemmove, which is a clearer description of what
the routine is doing.
For the same reason, rename writebarriercopy to typedslicecopy.
Change-Id: I6f23bef2c2215509fefba175b16908f76dc7538c
Reviewed-on: https://go-review.googlesource.com/2276
Reviewed-by: Rick Hudson <rlh@golang.org>
Add write barrier to atomic operations manipulating pointers.
In general an atomic write of a pointer word may indicate racy accesses,
so there is no strictly safe way to attempt to keep the shadow copy
in sync with the real one. Instead, mark the shadow copy as not used.
Redirect sync/atomic pointer routines back to the runtime ones,
so that there is only one copy of the write barrier and shadow logic.
In time we might consider doing this for most of the sync/atomic
functions, but for now only the pointer routines need that treatment.
Found with GODEBUG=wbshadow=1 mode.
Eventually that will run automatically, but right now
it still detects other missing write barriers.
Change-Id: I852936b9a111a6cb9079cfaf6bd78b43016c0242
Reviewed-on: https://go-review.googlesource.com/2066
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>