ARM currently does not use a hardware yield instruction in the spin
loop in procyield because the YIELD instruction was only added in
ARMv6K. However, it appears earlier ARM chips will interpret the YIELD
encoding as an effective NOP (specifically an MSR instruction that
ultimately has no effect on the CPSR register).
Hence, use YIELD in procyield on ARM since it should be, at worst,
harmless.
Fixes#16663.
Change-Id: Id1787ac48862b785b92c28f1ac84cb4908d2173d
Reviewed-on: https://go-review.googlesource.com/45250
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
This commit reworks multiway select statements to use normal control
flow primitives instead of the previous setjmp/longjmp-like behavior.
This simplifies liveness analysis and should prevent issues around
"returns twice" function calls within SSA passes.
test/live.go is updated because liveness analysis's CFG is more
representative of actual control flow. The case bodies are the only
real successors of the selectgo call, but previously the selectsend,
selectrecv, etc. calls were included in the successors list too.
Updates #19331.
Change-Id: I7f879b103a4b85e62fc36a270d812f54c0aa3e83
Reviewed-on: https://go-review.googlesource.com/37661
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Now that we don't rescan stacks, stack barriers are unnecessary. This
removes all of the code and structures supporting them as well as
tests that were specifically for stack barriers.
Updates #17503.
Change-Id: Ia29221730e0f2bbe7beab4fa757f31a032d9690c
Reviewed-on: https://go-review.googlesource.com/36620
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
So it could be inlined.
Using bit-tricks it could be implemented without condition
(improved trick version by Minux Ma).
Simple benchmark shows it is faster on i386 and x86_64, though
I don't know will it be faster on other architectures?
benchmark old ns/op new ns/op delta
BenchmarkFastrand-3 2.79 1.48 -46.95%
BenchmarkFastrandHashiter-3 25.9 24.9 -3.86%
Change-Id: Ie2eb6d0f598c0bb5fac7f6ad0f8b5e3eddaa361b
Reviewed-on: https://go-review.googlesource.com/34782
Reviewed-by: Minux Ma <minux@golang.org>
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
gobuf.ctxt is set to nil from many places in assembly code and these
assignments require write barriers with the hybrid barrier.
Conveniently, in most of these places ctxt should already be nil, in
which case we don't need the barrier. This commit changes these places
to assert that ctxt is already nil.
gogo is more complicated, since ctxt may not already be nil. For gogo,
we manually perform the write barrier if ctxt is not nil.
Updates #17503.
Change-Id: I9d75e27c75a1b7f8b715ad112fc5d45ffa856d30
Reviewed-on: https://go-review.googlesource.com/31764
Reviewed-by: Cherry Zhang <cherryyz@google.com>
Currently reflectcall has a subtle dance with write barriers where the
assembly code copies the result values from the stack to the in-heap
argument frame without write barriers and then calls into the runtime
after the fact to invoke the necessary write barriers.
For the hybrid barrier (and for ROC), we need to switch to a
*pre*-write write barrier, which is very difficult to do with the
current setup. We could tie ourselves in knots of subtle reasoning
about why it's okay in this particular case to have a post-write write
barrier, but this commit instead takes a different approach. Rather
than making things more complex, this simplifies reflection calls so
that the argument copy is done in Go using normal bulk write barriers.
The one difficulty with this approach is that calling into Go requires
putting arguments on the stack, but the call* functions "donate" their
entire stack frame to the called function. We can get away with this
now because the copy avoids using the stack and has copied the results
out before we clobber the stack frame to call into the write barrier.
The solution in this CL is to call another function, passing arguments
in registers instead of on the stack, and let that other function
reserve more stack space and setup the arguments for the runtime.
This approach seemed to work out the best. I also tried making the
call* functions reserve 32 extra bytes of frame for the write barrier
arguments and adjust SP up by 32 bytes around the call. However, even
with the necessary changes to the assembler to correct the spdelta
table, the runtime was still having trouble with the frame layout (and
the changes to the assembler caused many other things that do strange
things with the SP to fail to assemble). The approach I took doesn't
require any funny business with the SP.
Updates #17503.
Change-Id: Ie2bb0084b24d6cff38b5afb218b9e0534ad2119e
Reviewed-on: https://go-review.googlesource.com/31655
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
morestack writes the context pointer to gobuf.ctxt, but since
morestack is written in assembly (and has to be very careful with
state), it does *not* invoke the requisite write barrier for this
write. Instead, we patch this up later, in newstack, where we invoke
an explicit write barrier for ctxt.
This already requires some subtle reasoning, and it's going to get a
lot hairier with the hybrid barrier.
Fix this by simplifying the whole mechanism. Instead of writing
gobuf.ctxt in morestack, just pass the value of the context register
to newstack and let it write it to gobuf.ctxt. This is a normal Go
pointer write, so it gets the normal Go write barrier. No subtle
reasoning required.
Updates #17503.
Change-Id: Ia6bf8459bfefc6828f53682ade32c02412e4db63
Reviewed-on: https://go-review.googlesource.com/31550
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Cherry Zhang <cherryyz@google.com>
If morestack runs on the g0 or gsignal stack, it currently performs
some abort operation that typically produces a signal (e.g., it does
an INT $3 on x86). This is useful if you're running in a debugger, but
if you're not, the runtime tries to trap this signal, which is likely
to send the program into a deeper spiral of collapse and lead to very
confusing diagnostic output.
Help out people trying to debug without a debugger by making morestack
print an informative message before blowing up.
Change-Id: I2814c64509b137bfe20a00091d8551d18c2c4749
Reviewed-on: https://go-review.googlesource.com/31133
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This makes it possible to inline getcallersp. getcallersp is on the
hot path of defers, so this slightly speeds up defer:
name old time/op new time/op delta
Defer-4 78.3ns ± 2% 75.1ns ± 1% -4.00% (p=0.000 n=9+8)
Updates #14939.
Change-Id: Icc1cc4cd2f0a81fc4c8344432d0b2e783accacdd
Reviewed-on: https://go-review.googlesource.com/29655
TryBot-Result: Gobot Gobot <gobot@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Add missing function prototypes.
Fix function prototypes.
Use FP references instead of SP references.
Fix variable names.
Update comments.
Clean up whitespace. (Not for vet.)
All fairly minor fixes to make vet happy.
Updates #11041
Change-Id: Ifab2cdf235ff61cdc226ab1d84b8467b5ac9446c
Reviewed-on: https://go-review.googlesource.com/27713
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Add support for the context function set by runtime.SetCgoTraceback.
The context function was added in CL 17761, without support.
This CL is the support.
This CL has not been tested for real C code, as a working context
function for C code requires unwind support that does not seem to exist.
I wanted to get the CL out before the freeze.
I apologize for the length of this CL. It's mostly plumbing, but
unfortunately the plumbing is processor-specific.
Change-Id: I8ce11a0de9b3dafcc29efd2649d776e93bff0e90
Reviewed-on: https://go-review.googlesource.com/22508
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The tree's pretty inconsistent about single space vs double space
after a period in documentation. Make it consistently a single space,
per earlier decisions. This means contributors won't be confused by
misleading precedence.
This CL doesn't use go/doc to parse. It only addresses // comments.
It was generated with:
$ perl -i -npe 's,^(\s*// .+[a-z]\.) +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.) +([A-Z])')
$ go test go/doc -update
Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7
Reviewed-on: https://go-review.googlesource.com/20022
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Dave Day <djd@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
They do the same thing, except memequal also has the short-circuit
check if the two pointers are equal.
A) We might as well always do the short-circuit check, it is only 2 instructions.
B) The extra function call (memequal->memeq) is expensive.
benchmark old ns/op new ns/op delta
BenchmarkArrayEqual-8 8.56 5.31 -37.97%
No noticeable affect on the former memeq user (maps).
Fixes#14302
Change-Id: I85d1ada59ed11e64dd6c54667f79d32cc5f81948
Reviewed-on: https://go-review.googlesource.com/19843
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
CL 18964 included an extra patch (sorry, my first experience of
git-codereview) which defined the conventional breakpoint instruction
used by Plan 9 on arm, but also introduced a benign but unneeded
call to runtime.emptyfunc. This CL removes the redundant call again.
This completes the series of CLs which add support for Plan 9 on arm.
Change-Id: Id293cfd40557c9d79b4b6cb164ed7ed49295b178
Reviewed-on: https://go-review.googlesource.com/19010
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Fields in Plan 9 object headers are big-endian, on all architectures.
Change-Id: If95ad29750b776338178d660646568bf26a4abda
Reviewed-on: https://go-review.googlesource.com/18964
Reviewed-by: Russ Cox <rsc@golang.org>
Fixes#13881.
Change-Id: Idff77db381640184ddd2b65022133bb226168800
Reviewed-on: https://go-review.googlesource.com/18449
Reviewed-by: David Crawshaw <crawshaw@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
We need a runtime check because the original issue is encountered
when running cross compiled windows program from linux. It's better
to give a meaningful crash message earlier than to segfault later.
The added test should not impose any measurable overhead to Go
programs.
For #12415.
Change-Id: Ib4a24ef560c09c0585b351d62eefd157b6b7f04c
Reviewed-on: https://go-review.googlesource.com/14207
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This change breaks out most of the atomics functions in the runtime
into package runtime/internal/atomic. It adds some basic support
in the toolchain for runtime packages, and also modifies linux/arm
atomics to remove the dependency on the runtime's mutex. The mutexes
have been replaced with spinlocks.
all trybots are happy!
In addition to the trybots, I've tested on the darwin/arm64 builder,
on the darwin/arm builder, and on a ppc64le machine.
Change-Id: I6698c8e3cf3834f55ce5824059f44d00dc8e3c2f
Reviewed-on: https://go-review.googlesource.com/14204
Run-TryBot: Michael Matloob <matloob@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
I went looking for an arm system whose stacks are by default smaller
than 64KB. In fact the smallest common linux target I could find was
Android, which like iOS uses 1MB stacks.
Fixes#11873
Change-Id: Ieeb66ad095b3da18d47ba21360ea75152a4107c6
Reviewed-on: https://go-review.googlesource.com/14602
Reviewed-by: Michael Hudson-Doyle <michael.hudson@canonical.com>
Reviewed-by: Minux Ma <minux@golang.org>
When building a shared library, all functions that are declared must actually
be defined.
Change-Id: I1488690cecfb66e62d9fdb3b8d257a4dc31d202a
Reviewed-on: https://go-review.googlesource.com/14187
Reviewed-by: Dave Cheney <dave@cheney.net>
Also, crash early on non-Linux SMP ARM systems when GOARM < 7;
without the proper synchronization, SMP cannot work.
Linux is okay because we call kernel-provided routines for
synchronization and barriers, and the kernel takes care of
providing the right routines for the current system.
On non-Linux systems we are left to fend for ourselves.
It is possible to use different synchronization on GOARM=6,
but it's too late to do that in the Go 1.5 cycle.
We don't believe there are any non-Linux SMP GOARM=6 systems anyway.
Fixes#12067.
Change-Id: I771a556e47893ed540ec2cd33d23c06720157ea3
Reviewed-on: https://go-review.googlesource.com/13363
Reviewed-by: Austin Clements <austin@google.com>
This only triggers on ARMv7+.
If there are important SMP ARMv6 machines we can reconsider.
Makes TestLFStress tests pass and sync/atomic tests not time out
on Apple iPad Mini 3.
Fixes#7977.
Fixes#10189.
Change-Id: Ie424dea3765176a377d39746be9aa8265d11bec4
Reviewed-on: https://go-review.googlesource.com/12950
Reviewed-by: David Crawshaw <crawshaw@golang.org>
We want to adjust the DIV calling convention to use m,
and usleep can be called without an m, so switch to a
multiplication by the reciprocal (and test).
Step toward a fix for #6699 and #10486.
Change-Id: Iccf76a18432d835e48ec64a2fa34a0e4d6d4b955
Reviewed-on: https://go-review.googlesource.com/12898
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Currently its possible for the garbage collector to observe
uninitialized memory or stale heap bitmap bits on weakly ordered
architectures such as ARM and PPC. On such architectures, the stores
that zero newly allocated memory and initialize its heap bitmap may
move after a store in user code that makes the allocated object
observable by the garbage collector.
To fix this, add a "publication barrier" (also known as an "export
barrier") before returning from mallocgc. This is a store/store
barrier that ensures any write done by user code that makes the
returned object observable to the garbage collector will be ordered
after the initialization performed by mallocgc. No barrier is
necessary on the reading side because of the data dependency between
loading the pointer and loading the contents of the object.
Fixes one of the issues raised in #9984.
Change-Id: Ia3d96ad9c5fc7f4d342f5e05ec0ceae700cd17c8
Reviewed-on: https://go-review.googlesource.com/11083
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Martin Capitanio <capnm9@gmail.com>
Reviewed-by: Russ Cox <rsc@golang.org>
In preparation for rename of cgocall_errno into cgocall and
asmcgocall_errno into asmcgocall in the fllowinng CL.
rsc requested CL 9387 to be split into two parts. This is first part.
Change-Id: I7434f0e4b44dd37017540695834bfcb1eebf0b2f
Reviewed-on: https://go-review.googlesource.com/11166
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This commit implements stack barriers to minimize the amount of
stack re-scanning that must be done during mark termination.
Currently the GC scans stacks of active goroutines twice during every
GC cycle: once at the beginning during root discovery and once at the
end during mark termination. The second scan happens while the world
is stopped and guarantees that we've seen all of the roots (since
there are no write barriers on writes to local stack
variables). However, this means pause time is proportional to stack
size. In particularly recursive programs, this can drive pause time up
past our 10ms goal (e.g., it takes about 150ms to scan a 50MB heap).
Re-scanning the entire stack is rarely necessary, especially for large
stacks, because usually most of the frames on the stack were not
active between the first and second scans and hence any changes to
these frames (via non-escaping pointers passed down the stack) were
tracked by write barriers.
To efficiently track how far a stack has been unwound since the first
scan (and, hence, how much needs to be re-scanned), this commit
introduces stack barriers. During the first scan, at exponentially
spaced points in each stack, the scan overwrites return PCs with the
PC of the stack barrier function. When "returned" to, the stack
barrier function records how far the stack has unwound and jumps to
the original return PC for that point in the stack. Then the second
scan only needs to proceed as far as the lowest barrier that hasn't
been hit.
For deeply recursive programs, this substantially reduces mark
termination time (and hence pause time). For the goscheme example
linked in issue #10898, prior to this change, mark termination times
were typically between 100 and 500ms; with this change, mark
termination times are typically between 10 and 20ms. As a result of
the reduced stack scanning work, this reduces overall execution time
of the goscheme example by 20%.
Fixes#10898.
The effect of this on programs that are not deeply recursive is
minimal:
name old time/op new time/op delta
BinaryTree17 3.16s ± 2% 3.26s ± 1% +3.31% (p=0.000 n=19+19)
Fannkuch11 2.42s ± 1% 2.48s ± 1% +2.24% (p=0.000 n=17+19)
FmtFprintfEmpty 50.0ns ± 3% 49.8ns ± 1% ~ (p=0.534 n=20+19)
FmtFprintfString 173ns ± 0% 175ns ± 0% +1.49% (p=0.000 n=16+19)
FmtFprintfInt 170ns ± 1% 175ns ± 1% +2.97% (p=0.000 n=20+19)
FmtFprintfIntInt 288ns ± 0% 295ns ± 0% +2.73% (p=0.000 n=16+19)
FmtFprintfPrefixedInt 242ns ± 1% 252ns ± 1% +4.13% (p=0.000 n=18+18)
FmtFprintfFloat 324ns ± 0% 323ns ± 0% -0.36% (p=0.000 n=20+19)
FmtManyArgs 1.14µs ± 0% 1.12µs ± 1% -1.01% (p=0.000 n=18+19)
GobDecode 8.88ms ± 1% 8.87ms ± 0% ~ (p=0.480 n=19+18)
GobEncode 6.80ms ± 1% 6.85ms ± 0% +0.82% (p=0.000 n=20+18)
Gzip 363ms ± 1% 363ms ± 1% ~ (p=0.077 n=18+20)
Gunzip 90.6ms ± 0% 90.0ms ± 1% -0.71% (p=0.000 n=17+18)
HTTPClientServer 51.5µs ± 1% 50.8µs ± 1% -1.32% (p=0.000 n=18+18)
JSONEncode 17.0ms ± 0% 17.1ms ± 0% +0.40% (p=0.000 n=18+17)
JSONDecode 61.8ms ± 0% 63.8ms ± 1% +3.11% (p=0.000 n=18+17)
Mandelbrot200 3.84ms ± 0% 3.84ms ± 1% ~ (p=0.583 n=19+19)
GoParse 3.71ms ± 1% 3.72ms ± 1% ~ (p=0.159 n=18+19)
RegexpMatchEasy0_32 100ns ± 0% 100ns ± 1% -0.19% (p=0.033 n=17+19)
RegexpMatchEasy0_1K 342ns ± 1% 331ns ± 0% -3.41% (p=0.000 n=19+19)
RegexpMatchEasy1_32 82.5ns ± 0% 81.7ns ± 0% -0.98% (p=0.000 n=18+18)
RegexpMatchEasy1_1K 505ns ± 0% 494ns ± 1% -2.16% (p=0.000 n=18+18)
RegexpMatchMedium_32 137ns ± 1% 137ns ± 1% -0.24% (p=0.048 n=20+18)
RegexpMatchMedium_1K 41.6µs ± 0% 41.3µs ± 1% -0.57% (p=0.004 n=18+20)
RegexpMatchHard_32 2.11µs ± 0% 2.11µs ± 1% +0.20% (p=0.037 n=17+19)
RegexpMatchHard_1K 63.9µs ± 2% 63.3µs ± 0% -0.99% (p=0.000 n=20+17)
Revcomp 560ms ± 1% 522ms ± 0% -6.87% (p=0.000 n=18+16)
Template 75.0ms ± 0% 75.1ms ± 1% +0.18% (p=0.013 n=18+19)
TimeParse 358ns ± 1% 364ns ± 0% +1.74% (p=0.000 n=20+15)
TimeFormat 360ns ± 0% 372ns ± 0% +3.55% (p=0.000 n=20+18)
Change-Id: If8a9bfae6c128d15a4f405e02bcfa50129df82a2
Reviewed-on: https://go-review.googlesource.com/10314
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
There's no need to call/ret to the body implementation.
It can write the result to the right place. Just jump to
it and have it return to our caller.
Old:
call body implementation
compute result
put result in a register
return
write register to result location
return
New:
load address of result location into a register
jump to body implementation
compute result
write result to passed-in address
return
It's a bit tricky on 386 because there is no free register
with which to pass the result location. Free up a register
by keeping around blen-alen instead of both alen and blen.
Change-Id: If2cf0682a5bf1cc592bdda7c126ed4eee8944fba
Reviewed-on: https://go-review.googlesource.com/9202
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
This makes it easier to experiment with alternative implementations.
While we're here, update the comments.
No functional changes. Passes toolstash -cmp.
Change-Id: I428535754908f0fdd7cc36c214ddb6e1e60f376e
Reviewed-on: https://go-review.googlesource.com/8310
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
runtime·main·f is normalized by the linker to runtime.main.f, as is
the compiler-generated symbol runtime.main·f. Change the former to
runtime·mainPC instead.
Fixes issue #9934
Change-Id: I656a6fa6422d45385fa2cc55bd036c6affa1abfe
Reviewed-on: https://go-review.googlesource.com/8234
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Also fixed a stack corruption bug for nacl/amd64p32.
Change-Id: I64b821b16999c296a159137d971af3870053c621
Signed-off-by: Shenghou Ma <minux@golang.org>
Reviewed-on: https://go-review.googlesource.com/7073
Reviewed-by: Dave Cheney <dave@cheney.net>
We used to not call traceback from goexit1.
But now tracer does it and crashes on amd64p32:
runtime: unexpected return pc for runtime.getg called from 0x108a4240
goroutine 18 [runnable, locked to thread]:
runtime.traceGoEnd()
src/runtime/trace.go:758 fp=0x10818fe0 sp=0x10818fdc
runtime.goexit1()
src/runtime/proc1.go:1540 +0x20 fp=0x10818fe8 sp=0x10818fe0
runtime.getg(0x0)
src/runtime/asm_386.s:2414 fp=0x10818fec sp=0x10818fe8
created by runtime/pprof_test.TestTraceStress
src/runtime/pprof/trace_test.go:123 +0x500
Return PC from goexit1 points right after goexit (+0x6).
It happens to work most of the time somehow.
This change fixes traceback from goexit1 by adding an additional NOP to goexit.
Fixes#9931
Change-Id: Ied25240a181b0a2d7bc98127b3ed9068e9a1a13e
Reviewed-on: https://go-review.googlesource.com/5460
Reviewed-by: Russ Cox <rsc@golang.org>
Package runtime's Go code was converted to directly call getcallerpc
and getcallersp in https://golang.org/cl/138740043, but the assembly
implementations were not removed.
Change-Id: Ib2eaee674d594cbbe799925aae648af782a01c83
Reviewed-on: https://go-review.googlesource.com/5901
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Fix many incorrect FP references and a few other details.
Some errors remain, especially in vlop, but fixing them requires semantics. For another day.
Change-Id: Ib769fb519b465e79fc08d004a51acc5644e8b259
Reviewed-on: https://go-review.googlesource.com/5288
Reviewed-by: Russ Cox <rsc@golang.org>
Require a name to be specified when referencing the pseudo-stack.
If you want a real stack offset, use the hardware stack pointer (e.g.,
R13 on arm), not SP.
Fix affected assembly files.
Change-Id: If3545f187a43cdda4acc892000038ec25901132a
Reviewed-on: https://go-review.googlesource.com/5120
Run-TryBot: Rob Pike <r@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
Several .s files for ARM had several properties the new assembler will not support.
These include:
- mentioning SP or PC as a hardware register
These are always pseudo-registers except that in some contexts
they're not, and it's confusing because the context should not affect
which register you mean. Change the references to the hardware
registers to be explicit: R13 for SP, R15 for PC.
- constant creation using assignment
The files say a=b when they could instead say #define a b.
There is no reason to have both mechanisms.
- R(0) to refer to R0.
Some macros use this to a great extent. Again, it's easy just to
use a #define to rename a register.
Change-Id: I002335ace8e876c5b63c71c2560533eb835346d2
Reviewed-on: https://go-review.googlesource.com/4822
Reviewed-by: Dave Cheney <dave@cheney.net>
CL 2118 makes the assumption that all references to runtime.tlsg
should be accompanied by a declaration of runtime.tlsg if its type
should be a normal variable, instead of a placeholder for TLS
relocation.
Because if runtime.tlsg is not declared by the runtime package,
the type of runtime.tlsg will be zero, so fix the check in liblink
to look for 0 instead of STLSBSS (the type will be initialized by
cmd/ld, but cmd/ld doesn't run during assembly).
Change-Id: I691ac5c3faea902f8b9a0b963e781b22e7b269a7
Reviewed-on: https://go-review.googlesource.com/4030
Reviewed-by: David Crawshaw <crawshaw@golang.org>
eqstring does not need to check the length of the strings.
6g
benchmark old ns/op new ns/op delta
BenchmarkCompareStringEqual 7.03 6.14 -12.66%
BenchmarkCompareStringIdentical 3.36 3.04 -9.52%
5g
benchmark old ns/op new ns/op delta
BenchmarkCompareStringEqual 238 232 -2.52%
BenchmarkCompareStringIdentical 90.8 80.7 -11.12%
The equivalent PPC changes are in a separate commit
because I don't have the hardware to test them.
Change-Id: I292874324b9bbd9d24f57a390cfff8b550cdd53c
Reviewed-on: https://go-review.googlesource.com/3955
Reviewed-by: Keith Randall <khr@golang.org>
Make auxv parsing in linux/arm less of a special case.
* rename setup_auxv to sysargs
* exclude linux/arm from vdso_none.go
* move runtime.checkarm after runtime.sysargs so arm specific
values are properly initialised
Change-Id: I1ca7f5844ad5a162337ff061a83933fc9a2b5ff6
Reviewed-on: https://go-review.googlesource.com/2681
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The equal algorithm used to take the size
equal(p, q *T, size uintptr) bool
With this change, it does not
equal(p, q *T) bool
Similarly for the hash algorithm.
The size is rarely used, as most equal functions know the size
of the thing they are comparing. For instance f32equal already
knows its inputs are 4 bytes in size.
For cases where the size is not known, we allocate a closure
(one for each size needed) that points to an assembly stub that
reads the size out of the closure and calls generic code that
has a size argument.
Reduces the size of the go binary by 0.07%. Performance impact
is not measurable.
Change-Id: I6e00adf3dde7ad2974adbcff0ee91e86d2194fec
Reviewed-on: https://go-review.googlesource.com/2392
Reviewed-by: Russ Cox <rsc@golang.org>