clearfat (used to zero initialize structures) will use AX for x86 block ops. If we write to AX while calculating the dest pointer, we will fill the structure with incorrect values.
Since 64-bit arithmetic uses AX to synthesize a 64-bit register, getting an adress by indexing with 64-bit ops can clobber the register.
Fixes#5820.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/11383043
Deferred functions are not run by a call instruction. They are run by
the runtime editing registers to make the call start with a caller PC
returning to a
CALL deferreturn
instruction.
That instruction has always had the line number of the function's
closing brace, but that instruction's line number is irrelevant.
Stack traces show the line number of the instruction before the
return PC, because normally that's what started the call. Not so here.
The instruction before the CALL deferreturn could be almost anywhere
in the function; it's unrelated and its line number is incorrect to show.
Fix the line number by inserting a true hardware no-op with the right
line number before the returned-to CALL instruction. That is, the deferred
calls now appear to start with a caller PC returning to the second instruction
in this sequence:
NOP
CALL deferreturn
The traceback will show the line number of the NOP, which we've set
to be the line number of the function's closing brace.
The NOP here is not the usual pseudo-instruction, which would be
elided by the linker. Instead it is the real hardware instruction:
XCHG AX, AX on 386 and amd64, and AND.EQ R0, R0, R0 on ARM.
Fixes#5856.
R=ken2, ken
CC=golang-dev
https://golang.org/cl/11223043
Escape analysis needs the right curfn value on a dclfunc node, otherwise it will not analyze the function.
When generating method value wrappers, we forgot to set the curfn correctly.
Fixes#5753.
R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/10383048
A struct with a single field was considered as equivalent to the
field type, which is incorrect is the field is blank.
Fields with padding could make the compiler think some
types are comparable when they are not.
Fixes#5698.
R=rsc, golang-dev, daniel.morsing, bradfitz, gri, r
CC=golang-dev
https://golang.org/cl/10271046
Design doc at golang.org/s/go12slice.
This is an experimental feature and may not be included in the release.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/10743046
fn can clearly hold a closure in memory.
argp/pc point into stack and so can hold
in memory a block that was previously
a large stack serment.
R=golang-dev, dave, rsc
CC=golang-dev
https://golang.org/cl/10784043
Exported inlined functions that perform a string conversion
using a non-exported named type may miss it in export data.
Fixes#5755.
R=rsc, golang-dev, ality, r
CC=golang-dev
https://golang.org/cl/10464043
Functions without bodies were excluded from the ordering logic,
because when I wrote the ordering logic there was no reason to
analyze them.
But then we added //go:noescape tags that need analysis, and we
didn't update the ordering logic.
So in the absence of good ordering, //go:noescape only worked
if it appeared before the use in the source code.
Fixes#5773.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/10570043
The existing compilers convert empty strings to empty
but non-nil byte and rune slices. The spec required
a nil byte and rune slice in those cases. That seems
an odd additional requirement. Adjust the spec to
match the reality.
Also, removed over-specification for conversions of
nil []byte and []rune: such nil slices already act
like empty slices and thus don't need extra language.
Added extra examples instead.
Fixes#5704.
R=rsc, r, iant
CC=golang-dev
https://golang.org/cl/10440045
This avoids problems with inlining in genwrappers, which
occurs after functions have been compiled. Compiling a
function may cause some unused local vars to be removed from
the list. Since a local var may be unused due to
optimization, it is possible that a removed local var winds up
beingused in the inlined version, in which case hilarity
ensues.
Fixes#5515.
R=golang-dev, khr, dave
CC=golang-dev
https://golang.org/cl/10210043
It was never tested and also breaks Windows.
run.go doesn't yet support the proper !windows,!plan9 syntax.
««« original CL description
test: do not run SIGCHLD test on Plan 9
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/10017045
»»»
R=golang-dev, dave
CC=golang-dev
https://golang.org/cl/10024044
It works on i386, but fails on amd64 and arm.
««« original CL description
runtime: prevent the GC from seeing the content of a frame in runfinq()
Fixes#5348.
R=golang-dev, dvyukov
CC=golang-dev
https://golang.org/cl/8954044
»»»
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/8695051
They caused internal compiler errors and they're expensive enough that inlining them doesn't make sense.
Fixes#5259.
R=golang-dev, r, iant, remyoudompheng
CC=golang-dev
https://golang.org/cl/8636043
Don't measure wall time in map.go. Keep it portable
and only test NaN, but not time.
Move time tests to mapnan.go and only measure user CPU time,
not wall time. It builds on Darwin and Linux, the primary
platforms where people hack on the runtime & in particular
maps. The runtime is shared, though, so we don't need it to
run on all of the platforms.
Fixes flaky build failures like:
http://build.golang.org/log/ba67eceefdeaa1142cb6c990a62fa3ffd8fd73f8
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/8479043