runtime/internal/sys will hold system-, architecture- and config-
specific constants.
Updates #11647
Change-Id: I6db29c312556087a42e8d2bdd9af40d157c56b54
Reviewed-on: https://go-review.googlesource.com/16817
Reviewed-by: Russ Cox <rsc@golang.org>
Applies to types fixAlloc, mCache, mCentral, mHeap, mSpan, and
mSpanList.
Two special cases:
1. mHeap_Scavenge() previously didn't take an *mheap parameter, so it
was specially handled in this CL.
2. mHeap_Free() would have collided with mheap's "free" field, so it's
been renamed to (*mheap).freeSpan to parallel its underlying
(*mheap).freeSpanLocked method.
Change-Id: I325938554cca432c166fe9d9d689af2bbd68de4b
Reviewed-on: https://go-review.googlesource.com/16221
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Change compiler-invoked interface functions to directly take
iface/eface parameters instead of fInterface/interface{} to avoid
needing to always convert.
For the handful of functions that legitimately need to take an
interface{} parameter, add efaceOf to type-safely convert *interface{}
to *eface.
Change-Id: I8928761a12fd3c771394f36adf93d3006a9fcf39
Reviewed-on: https://go-review.googlesource.com/16166
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Instead of open-coding conversions from *string to unsafe.Pointer then
to *stringStruct, add a helper function to add some type safety.
Bonus: This caught two **string values being converted to
*stringStruct in heapdump.go.
While here, get rid of the redundant _string type, but add in a
stringStructDWARF type used for generating DWARF debug info.
Change-Id: I8882f8cca66ac45190270f82019a5d85db023bd2
Reviewed-on: https://go-review.googlesource.com/16131
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This isn't C anymore. No binary change to pkg/linux_amd64/runtime.a.
Change-Id: I24d66b0f5ac888f432b874aac684b1395e7c8345
Reviewed-on: https://go-review.googlesource.com/15903
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
The one in misc/makerelease/makerelease.go is particularly bad and
probably warrants rotating our keys.
I didn't update old weekly notes, and reverted some changes involving
test code for now, since we're late in the Go 1.5 freeze. Otherwise,
the rest are all auto-generated changes, and all manually reviewed.
Change-Id: Ia2753576ab5d64826a167d259f48a2f50508792d
Reviewed-on: https://go-review.googlesource.com/12048
Reviewed-by: Rob Pike <r@golang.org>
Currently, startTheWorld clears preemptoff for the current M before
starting the world. A few callers increment m.locks around
startTheWorld, presumably to prevent preemption any time during
starting the world. This is almost certainly pointless (none of the
other callers do this), but there's no harm in making startTheWorld
keep preemption disabled until it's all done, which definitely lets us
drop these m.locks manipulations.
Change-Id: I8a93658abd0c72276c9bafa3d2c7848a65b4691a
Reviewed-on: https://go-review.googlesource.com/10155
Reviewed-by: Russ Cox <rsc@golang.org>
There are several steps to stopping and starting the world and
currently they're open-coded in several places. The garbage collector
is the only thing that needs to stop and start the world in a
non-trivial pattern. Replace all other uses with calls to higher-level
functions that implement the entire pattern necessary to stop and
start the world.
This is a pure refectoring and should not change any code semantics.
In the following commits, we'll make changes that are easier to do
with this abstraction in place.
This commit renames the old starttheworld to startTheWorldWithSema.
This is a slight misnomer right now because the callers release
worldsema just before calling this. However, a later commit will swap
these and I don't want to think of another name in the mean time.
Change-Id: I5dc97f87b44fb98963c49c777d7053653974c911
Reviewed-on: https://go-review.googlesource.com/10154
Reviewed-by: Russ Cox <rsc@golang.org>
Previous CLs changed the representation of the non-heap type bitmaps
to be 1-bit bitmaps (pointer or not). Before this CL, the heap bitmap
stored a 2-bit type for each word and a mark bit and checkmark bit
for the first word of the object. (There used to be additional per-word bits.)
Reduce heap bitmap to 2-bit, with 1 dedicated to pointer or not,
and the other used for mark, checkmark, and "keep scanning forward
to find pointers in this object." See comments for details.
This CL replaces heapBitsSetType with very slow but obviously correct code.
A followup CL will optimize it. (Spoiler: the new code is faster than Go 1.4 was.)
Change-Id: I999577a133f3cfecacebdec9cdc3573c235c7fb9
Reviewed-on: https://go-review.googlesource.com/9703
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
'themoduledata' doesn't really make sense now we support multiple moduledata
objects.
Change-Id: I8263045d8f62a42cb523502b37289b0fba054f62
Reviewed-on: https://go-review.googlesource.com/8521
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
This changes all the places that consult themoduledata to consult a
linked list of moduledata objects, as will be necessary for
-linkshared to work.
Obviously, as there is as yet no way of adding moduledata objects to
this list, all this change achieves right now is wasting a few
instructions here and there.
Change-Id: I397af7f60d0849b76aaccedf72238fe664867051
Reviewed-on: https://go-review.googlesource.com/8231
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
In preparation for being able to run a go program that has code
in several objects, this changes from having several linker
symbols used by the runtime into having one linker symbol that
points at a structure containing the needed data. Multiple
object support will construct a linked list of such structures.
A follow up will initialize the slices in the themoduledata
structure directly from the linker but I was aiming for a minimal
diff for now.
Change-Id: I613cce35309801cf265a1d5ae5aaca8d689c5cbf
Reviewed-on: https://go-review.googlesource.com/7441
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Move code from malloc1.go, malloc2.go, mem.go, mgc0.go into
appropriate locations.
Factor mgc.go into mgc.go, mgcmark.go, mgcsweep.go, mstats.go.
A lot of this code was in certain files because the right place was in
a C file but it was written in Go, or vice versa. This is one step toward
making things actually well-organized again.
Change-Id: I6741deb88a7cfb1c17ffe0bcca3989e10207968f
Reviewed-on: https://go-review.googlesource.com/5300
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
Fixes#9791
g.issystem flag setup races with other code wherever we set it.
Even if we set both in parent goroutine and in the system goroutine,
it is still possible that some other goroutine crashes
before the flag is set. We could pass issystem flag to newproc1,
but we start all goroutines with go nowadays.
Instead look at g.startpc to distinguish system goroutines (similar to topofstack).
Change-Id: Ia3467968dee27fa07d9fecedd4c2b00928f26645
Reviewed-on: https://go-review.googlesource.com/4113
Reviewed-by: Keith Randall <khr@golang.org>
The code in mfinal.go is moved from malloc*.go and mgc*.go
and substantially unchanged.
The code in mbitmap.go is also moved from those files, but
cleaned up so that it can be called from those files (in most cases
the code being moved was not already a standalone function).
I also renamed the constants and wrote comments describing
the format. The result is a significant cleanup and isolation of
the bitmap code, but, roughly speaking, it should be treated
and reviewed as new code.
The other files changed only as much as necessary to support
this code movement.
This CL does NOT change the semantics of the heap or type
bitmaps at all, although there are now some obvious opportunities
to do so in followup CLs.
Change-Id: I41b8d5de87ad1d3cd322709931ab25e659dbb21d
Reviewed-on: https://go-review.googlesource.com/2991
Reviewed-by: Keith Randall <khr@golang.org>
They are no longer needed now that C is gone.
goatoi -> atoi
gofuncname/funcname -> funcname/cfuncname
goroundupsize -> already existing roundupsize
Change-Id: I278bc33d279e1fdc5e8a2a04e961c4c1573b28c7
Reviewed-on: https://go-review.googlesource.com/2154
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.
This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.
sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go
Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
Calls to goproc/deferproc used to push & pop two extra arguments,
the argument size and the function to call. Now, we allocate space
for those arguments in the outargs section so we don't have to
modify the SP.
Defers now use the stack pointer (instead of the argument pointer)
to identify which frame they are associated with.
A followon CL might simplify funcspdelta and some of the stack
walking code.
Fixes issue #8641
Change-Id: I835ec2f42f0392c5dec7cb0fe6bba6f2aed1dad8
Reviewed-on: https://go-review.googlesource.com/1601
Reviewed-by: Russ Cox <rsc@golang.org>
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/167540043