1
0
mirror of https://github.com/golang/go synced 2024-11-20 05:14:41 -07:00
Commit Graph

25 Commits

Author SHA1 Message Date
Michael Matloob
432cb66f16 runtime: break out system-specific constants into package sys
runtime/internal/sys will hold system-, architecture- and config-
specific constants.

Updates #11647

Change-Id: I6db29c312556087a42e8d2bdd9af40d157c56b54
Reviewed-on: https://go-review.googlesource.com/16817
Reviewed-by: Russ Cox <rsc@golang.org>
2015-11-12 17:04:45 +00:00
Matthew Dempsky
c17c42e8a5 runtime: rewrite lots of foo_Bar(f, ...) into f.bar(...)
Applies to types fixAlloc, mCache, mCentral, mHeap, mSpan, and
mSpanList.

Two special cases:

1. mHeap_Scavenge() previously didn't take an *mheap parameter, so it
was specially handled in this CL.

2. mHeap_Free() would have collided with mheap's "free" field, so it's
been renamed to (*mheap).freeSpan to parallel its underlying
(*mheap).freeSpanLocked method.

Change-Id: I325938554cca432c166fe9d9d689af2bbd68de4b
Reviewed-on: https://go-review.googlesource.com/16221
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-12 00:34:58 +00:00
Austin Clements
beedb1ec33 runtime: add pcvalue cache to improve stack scan speed
The cost of scanning large stacks is currently dominated by the time
spent looking up and decoding the pcvalue table. However, large stacks
are usually large not because they contain calls to many different
functions, but because they contain many calls to the same, small set
of recursive functions. Hence, walking large stacks tends to make the
same pcvalue queries many times.

Based on this observation, this commit adds a small, very simple, and
fast cache in front of pcvalue lookup. We thread this cache down from
operations that make many pcvalue calls, such as gentraceback, stack
scanning, and stack adjusting.

This simple cache works well because it has minimal overhead when it's
not effective. I also tried a hashed direct-map cache, CLOCK-based
replacement, round-robin replacement, and round-robin with lookups
disabled until there had been at least 16 probes, but none of these
approaches had obvious wins over the random replacement policy in this
commit.

This nearly doubles the overall performance of the deep stack test
program from issue #10898:

name        old time/op  new time/op  delta
Issue10898   16.5s ±12%    9.2s ±12%  -44.37%  (p=0.008 n=5+5)

It's a very slight win on the garbage benchmark:

name              old time/op  new time/op  delta
XBenchGarbage-12  4.92ms ± 1%  4.89ms ± 1%  -0.75%  (p=0.000 n=18+19)

It's a wash (but doesn't harm performance) on the go1 benchmarks,
which don't have particularly deep stacks:

name                      old time/op    new time/op    delta
BinaryTree17-12              3.11s ± 2%     3.20s ± 3%  +2.83%  (p=0.000 n=17+20)
Fannkuch11-12                2.51s ± 1%     2.51s ± 1%  -0.22%  (p=0.034 n=19+18)
FmtFprintfEmpty-12          50.8ns ± 3%    50.6ns ± 2%    ~     (p=0.793 n=20+20)
FmtFprintfString-12          174ns ± 0%     174ns ± 1%  +0.17%  (p=0.048 n=15+20)
FmtFprintfInt-12             177ns ± 0%     165ns ± 1%  -6.99%  (p=0.000 n=17+19)
FmtFprintfIntInt-12          283ns ± 1%     284ns ± 0%  +0.22%  (p=0.000 n=18+15)
FmtFprintfPrefixedInt-12     243ns ± 1%     244ns ± 1%  +0.40%  (p=0.000 n=20+19)
FmtFprintfFloat-12           318ns ± 0%     319ns ± 0%  +0.27%  (p=0.001 n=19+20)
FmtManyArgs-12              1.12µs ± 0%    1.14µs ± 0%  +1.74%  (p=0.000 n=19+20)
GobDecode-12                8.69ms ± 0%    8.73ms ± 1%  +0.46%  (p=0.000 n=18+18)
GobEncode-12                6.64ms ± 1%    6.61ms ± 1%  -0.46%  (p=0.000 n=20+20)
Gzip-12                      323ms ± 2%     319ms ± 1%  -1.11%  (p=0.000 n=20+20)
Gunzip-12                   42.8ms ± 0%    42.9ms ± 0%    ~     (p=0.158 n=18+20)
HTTPClientServer-12         63.3µs ± 1%    63.1µs ± 1%  -0.35%  (p=0.011 n=20+20)
JSONEncode-12               16.9ms ± 1%    17.3ms ± 1%  +2.84%  (p=0.000 n=19+20)
JSONDecode-12               59.7ms ± 0%    58.5ms ± 0%  -2.05%  (p=0.000 n=19+17)
Mandelbrot200-12            3.92ms ± 0%    3.91ms ± 0%  -0.16%  (p=0.003 n=19+19)
GoParse-12                  3.79ms ± 2%    3.75ms ± 2%  -0.91%  (p=0.005 n=20+20)
RegexpMatchEasy0_32-12       102ns ± 1%     101ns ± 1%  -0.80%  (p=0.001 n=14+20)
RegexpMatchEasy0_1K-12       337ns ± 1%     346ns ± 1%  +2.90%  (p=0.000 n=20+19)
RegexpMatchEasy1_32-12      84.4ns ± 2%    84.3ns ± 2%    ~     (p=0.743 n=20+20)
RegexpMatchEasy1_1K-12       502ns ± 1%     505ns ± 0%  +0.64%  (p=0.000 n=20+20)
RegexpMatchMedium_32-12      133ns ± 1%     132ns ± 1%  -0.85%  (p=0.000 n=20+19)
RegexpMatchMedium_1K-12     40.1µs ± 1%    39.8µs ± 1%  -0.77%  (p=0.000 n=18+18)
RegexpMatchHard_32-12       2.08µs ± 1%    2.07µs ± 1%  -0.55%  (p=0.001 n=18+19)
RegexpMatchHard_1K-12       62.4µs ± 1%    62.0µs ± 1%  -0.74%  (p=0.000 n=19+19)
Revcomp-12                   545ms ± 2%     545ms ± 3%    ~     (p=0.771 n=19+20)
Template-12                 73.7ms ± 1%    72.0ms ± 0%  -2.33%  (p=0.000 n=20+18)
TimeParse-12                 358ns ± 1%     351ns ± 1%  -2.07%  (p=0.000 n=20+20)
TimeFormat-12                369ns ± 1%     356ns ± 0%  -3.53%  (p=0.000 n=20+18)
[Geo mean]                  63.5µs         63.2µs       -0.41%

name                      old speed      new speed      delta
GobDecode-12              88.3MB/s ± 0%  87.9MB/s ± 0%  -0.43%  (p=0.000 n=18+17)
GobEncode-12               116MB/s ± 1%   116MB/s ± 1%  +0.47%  (p=0.000 n=20+20)
Gzip-12                   60.2MB/s ± 2%  60.8MB/s ± 1%  +1.13%  (p=0.000 n=20+20)
Gunzip-12                  453MB/s ± 0%   453MB/s ± 0%    ~     (p=0.160 n=18+20)
JSONEncode-12              115MB/s ± 1%   112MB/s ± 1%  -2.76%  (p=0.000 n=19+20)
JSONDecode-12             32.5MB/s ± 0%  33.2MB/s ± 0%  +2.09%  (p=0.000 n=19+17)
GoParse-12                15.3MB/s ± 2%  15.4MB/s ± 2%  +0.92%  (p=0.004 n=20+20)
RegexpMatchEasy0_32-12     311MB/s ± 1%   314MB/s ± 1%  +0.78%  (p=0.000 n=15+19)
RegexpMatchEasy0_1K-12    3.04GB/s ± 1%  2.95GB/s ± 1%  -2.90%  (p=0.000 n=19+19)
RegexpMatchEasy1_32-12     379MB/s ± 2%   380MB/s ± 2%    ~     (p=0.779 n=20+20)
RegexpMatchEasy1_1K-12    2.04GB/s ± 1%  2.02GB/s ± 0%  -0.62%  (p=0.000 n=20+20)
RegexpMatchMedium_32-12   7.46MB/s ± 1%  7.53MB/s ± 1%  +0.86%  (p=0.000 n=20+19)
RegexpMatchMedium_1K-12   25.5MB/s ± 1%  25.7MB/s ± 1%  +0.78%  (p=0.000 n=18+18)
RegexpMatchHard_32-12     15.4MB/s ± 1%  15.5MB/s ± 1%  +0.62%  (p=0.000 n=19+19)
RegexpMatchHard_1K-12     16.4MB/s ± 1%  16.5MB/s ± 1%  +0.82%  (p=0.000 n=20+19)
Revcomp-12                 466MB/s ± 2%   466MB/s ± 3%    ~     (p=0.765 n=19+20)
Template-12               26.3MB/s ± 1%  27.0MB/s ± 0%  +2.38%  (p=0.000 n=20+18)
[Geo mean]                97.8MB/s       98.0MB/s       +0.23%

Change-Id: I281044ae0b24990ba46487cacbc1069493274bc4
Reviewed-on: https://go-review.googlesource.com/13614
Reviewed-by: Keith Randall <khr@golang.org>
2015-10-22 17:48:13 +00:00
Matthew Dempsky
84afa1be76 runtime: make iface/eface handling more type safe
Change compiler-invoked interface functions to directly take
iface/eface parameters instead of fInterface/interface{} to avoid
needing to always convert.

For the handful of functions that legitimately need to take an
interface{} parameter, add efaceOf to type-safely convert *interface{}
to *eface.

Change-Id: I8928761a12fd3c771394f36adf93d3006a9fcf39
Reviewed-on: https://go-review.googlesource.com/16166
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-10-21 23:08:22 +00:00
Matthew Dempsky
d4a7ea1b71 runtime: add stringStructOf helper function
Instead of open-coding conversions from *string to unsafe.Pointer then
to *stringStruct, add a helper function to add some type safety.
Bonus: This caught two **string values being converted to
*stringStruct in heapdump.go.

While here, get rid of the redundant _string type, but add in a
stringStructDWARF type used for generating DWARF debug info.

Change-Id: I8882f8cca66ac45190270f82019a5d85db023bd2
Reviewed-on: https://go-review.googlesource.com/16131
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-10-20 23:13:27 +00:00
Matthew Dempsky
4c2465d47d runtime: use unsafe.Pointer(x) instead of (unsafe.Pointer)(x)
This isn't C anymore.  No binary change to pkg/linux_amd64/runtime.a.

Change-Id: I24d66b0f5ac888f432b874aac684b1395e7c8345
Reviewed-on: https://go-review.googlesource.com/15903
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-10-15 21:48:37 +00:00
Brad Fitzpatrick
2ae77376f7 all: link to https instead of http
The one in misc/makerelease/makerelease.go is particularly bad and
probably warrants rotating our keys.

I didn't update old weekly notes, and reverted some changes involving
test code for now, since we're late in the Go 1.5 freeze. Otherwise,
the rest are all auto-generated changes, and all manually reviewed.

Change-Id: Ia2753576ab5d64826a167d259f48a2f50508792d
Reviewed-on: https://go-review.googlesource.com/12048
Reviewed-by: Rob Pike <r@golang.org>
2015-07-11 14:36:33 +00:00
Austin Clements
9c44a41dd5 runtime: disallow preemption during startTheWorld
Currently, startTheWorld clears preemptoff for the current M before
starting the world. A few callers increment m.locks around
startTheWorld, presumably to prevent preemption any time during
starting the world. This is almost certainly pointless (none of the
other callers do this), but there's no harm in making startTheWorld
keep preemption disabled until it's all done, which definitely lets us
drop these m.locks manipulations.

Change-Id: I8a93658abd0c72276c9bafa3d2c7848a65b4691a
Reviewed-on: https://go-review.googlesource.com/10155
Reviewed-by: Russ Cox <rsc@golang.org>
2015-05-18 14:55:31 +00:00
Austin Clements
a1da255aa0 runtime: factor stoptheworld/starttheworld pattern
There are several steps to stopping and starting the world and
currently they're open-coded in several places. The garbage collector
is the only thing that needs to stop and start the world in a
non-trivial pattern. Replace all other uses with calls to higher-level
functions that implement the entire pattern necessary to stop and
start the world.

This is a pure refectoring and should not change any code semantics.
In the following commits, we'll make changes that are easier to do
with this abstraction in place.

This commit renames the old starttheworld to startTheWorldWithSema.
This is a slight misnomer right now because the callers release
worldsema just before calling this. However, a later commit will swap
these and I don't want to think of another name in the mean time.

Change-Id: I5dc97f87b44fb98963c49c777d7053653974c911
Reviewed-on: https://go-review.googlesource.com/10154
Reviewed-by: Russ Cox <rsc@golang.org>
2015-05-18 14:55:25 +00:00
Russ Cox
0234dfd493 runtime: use 2-bit heap bitmap (in place of 4-bit)
Previous CLs changed the representation of the non-heap type bitmaps
to be 1-bit bitmaps (pointer or not). Before this CL, the heap bitmap
stored a 2-bit type for each word and a mark bit and checkmark bit
for the first word of the object. (There used to be additional per-word bits.)

Reduce heap bitmap to 2-bit, with 1 dedicated to pointer or not,
and the other used for mark, checkmark, and "keep scanning forward
to find pointers in this object." See comments for details.

This CL replaces heapBitsSetType with very slow but obviously correct code.
A followup CL will optimize it. (Spoiler: the new code is faster than Go 1.4 was.)

Change-Id: I999577a133f3cfecacebdec9cdc3573c235c7fb9
Reviewed-on: https://go-review.googlesource.com/9703
Reviewed-by: Rick Hudson <rlh@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2015-05-11 14:43:45 +00:00
Russ Cox
4d0f3a1c95 cmd/internal/gc, runtime: use 1-bit bitmap for stack frames, data, bss
The bitmaps were 2 bits per pointer because we needed to distinguish
scalar, pointer, multiword, and we used the leftover value to distinguish
uninitialized from scalar, even though the garbage collector (GC) didn't care.

Now that there are no multiword structures from the GC's point of view,
cut the bitmaps down to 1 bit per pointer, recording just live pointer vs not.

The GC assumes the same layout for stack frames and for the maps
describing the global data and bss sections, so change them all in one CL.

The code still refers to 4-bit heap bitmaps and 2-bit "type bitmaps", since
the 2-bit representation lives (at least for now) in some of the reflect data.

Because these stack frame bitmaps are stored directly in the rodata in
the binary, this CL reduces the size of the 6g binary by about 1.1%.

Performance change is basically a wash, but using less memory,
and smaller binaries, and enables other bitmap reductions.

name                                      old mean                new mean        delta
BenchmarkBinaryTree17                13.2s × (0.97,1.03)     13.0s × (0.99,1.01)  -0.93% (p=0.005)
BenchmarkBinaryTree17-2              9.69s × (0.96,1.05)     9.51s × (0.96,1.03)  -1.86% (p=0.001)
BenchmarkBinaryTree17-4              10.1s × (0.97,1.05)     10.0s × (0.96,1.05)  ~ (p=0.141)
BenchmarkFannkuch11                  4.35s × (0.99,1.01)     4.43s × (0.98,1.04)  +1.75% (p=0.001)
BenchmarkFannkuch11-2                4.31s × (0.99,1.03)     4.32s × (1.00,1.00)  ~ (p=0.095)
BenchmarkFannkuch11-4                4.32s × (0.99,1.02)     4.38s × (0.98,1.04)  +1.38% (p=0.008)
BenchmarkFmtFprintfEmpty            83.5ns × (0.97,1.10)    87.3ns × (0.92,1.11)  +4.55% (p=0.014)
BenchmarkFmtFprintfEmpty-2          81.8ns × (0.98,1.04)    82.5ns × (0.97,1.08)  ~ (p=0.364)
BenchmarkFmtFprintfEmpty-4          80.9ns × (0.99,1.01)    82.6ns × (0.97,1.08)  +2.12% (p=0.010)
BenchmarkFmtFprintfString            320ns × (0.95,1.04)     322ns × (0.97,1.05)  ~ (p=0.368)
BenchmarkFmtFprintfString-2          303ns × (0.97,1.04)     304ns × (0.97,1.04)  ~ (p=0.484)
BenchmarkFmtFprintfString-4          305ns × (0.97,1.05)     306ns × (0.98,1.05)  ~ (p=0.543)
BenchmarkFmtFprintfInt               311ns × (0.98,1.03)     319ns × (0.97,1.03)  +2.63% (p=0.000)
BenchmarkFmtFprintfInt-2             297ns × (0.98,1.04)     301ns × (0.97,1.04)  +1.19% (p=0.023)
BenchmarkFmtFprintfInt-4             302ns × (0.98,1.02)     304ns × (0.97,1.03)  ~ (p=0.126)
BenchmarkFmtFprintfIntInt            554ns × (0.96,1.05)     554ns × (0.97,1.03)  ~ (p=0.975)
BenchmarkFmtFprintfIntInt-2          520ns × (0.98,1.03)     517ns × (0.98,1.02)  ~ (p=0.153)
BenchmarkFmtFprintfIntInt-4          524ns × (0.98,1.02)     525ns × (0.98,1.03)  ~ (p=0.597)
BenchmarkFmtFprintfPrefixedInt       433ns × (0.97,1.06)     434ns × (0.97,1.06)  ~ (p=0.804)
BenchmarkFmtFprintfPrefixedInt-2     413ns × (0.98,1.04)     413ns × (0.98,1.03)  ~ (p=0.881)
BenchmarkFmtFprintfPrefixedInt-4     420ns × (0.97,1.03)     421ns × (0.97,1.03)  ~ (p=0.561)
BenchmarkFmtFprintfFloat             620ns × (0.99,1.03)     636ns × (0.97,1.03)  +2.57% (p=0.000)
BenchmarkFmtFprintfFloat-2           601ns × (0.98,1.02)     617ns × (0.98,1.03)  +2.58% (p=0.000)
BenchmarkFmtFprintfFloat-4           613ns × (0.98,1.03)     626ns × (0.98,1.02)  +2.15% (p=0.000)
BenchmarkFmtManyArgs                2.19µs × (0.96,1.04)    2.23µs × (0.97,1.02)  +1.65% (p=0.000)
BenchmarkFmtManyArgs-2              2.08µs × (0.98,1.03)    2.10µs × (0.99,1.02)  +0.79% (p=0.019)
BenchmarkFmtManyArgs-4              2.10µs × (0.98,1.02)    2.13µs × (0.98,1.02)  +1.72% (p=0.000)
BenchmarkGobDecode                  21.3ms × (0.97,1.05)    21.1ms × (0.97,1.04)  -1.36% (p=0.025)
BenchmarkGobDecode-2                20.0ms × (0.97,1.03)    19.2ms × (0.97,1.03)  -4.00% (p=0.000)
BenchmarkGobDecode-4                19.5ms × (0.99,1.02)    19.0ms × (0.99,1.01)  -2.39% (p=0.000)
BenchmarkGobEncode                  18.3ms × (0.95,1.07)    18.1ms × (0.96,1.08)  ~ (p=0.305)
BenchmarkGobEncode-2                16.8ms × (0.97,1.02)    16.4ms × (0.98,1.02)  -2.79% (p=0.000)
BenchmarkGobEncode-4                15.4ms × (0.98,1.02)    15.4ms × (0.98,1.02)  ~ (p=0.465)
BenchmarkGzip                        650ms × (0.98,1.03)     655ms × (0.97,1.04)  ~ (p=0.075)
BenchmarkGzip-2                      652ms × (0.98,1.03)     655ms × (0.98,1.02)  ~ (p=0.337)
BenchmarkGzip-4                      656ms × (0.98,1.04)     653ms × (0.98,1.03)  ~ (p=0.291)
BenchmarkGunzip                      143ms × (1.00,1.01)     143ms × (1.00,1.01)  ~ (p=0.507)
BenchmarkGunzip-2                    143ms × (1.00,1.01)     143ms × (1.00,1.01)  ~ (p=0.313)
BenchmarkGunzip-4                    143ms × (1.00,1.01)     143ms × (1.00,1.01)  ~ (p=0.312)
BenchmarkHTTPClientServer            110µs × (0.98,1.03)     109µs × (0.99,1.02)  -1.40% (p=0.000)
BenchmarkHTTPClientServer-2          154µs × (0.90,1.08)     149µs × (0.90,1.08)  -3.43% (p=0.007)
BenchmarkHTTPClientServer-4          138µs × (0.97,1.04)     138µs × (0.96,1.04)  ~ (p=0.670)
BenchmarkJSONEncode                 40.2ms × (0.98,1.02)    40.2ms × (0.98,1.05)  ~ (p=0.828)
BenchmarkJSONEncode-2               35.1ms × (0.99,1.02)    35.2ms × (0.98,1.03)  ~ (p=0.392)
BenchmarkJSONEncode-4               35.3ms × (0.98,1.03)    35.3ms × (0.98,1.02)  ~ (p=0.813)
BenchmarkJSONDecode                  119ms × (0.97,1.02)     117ms × (0.98,1.02)  -1.80% (p=0.000)
BenchmarkJSONDecode-2                115ms × (0.99,1.02)     114ms × (0.98,1.02)  -1.18% (p=0.000)
BenchmarkJSONDecode-4                116ms × (0.98,1.02)     114ms × (0.98,1.02)  -1.43% (p=0.000)
BenchmarkMandelbrot200              6.03ms × (1.00,1.01)    6.03ms × (1.00,1.01)  ~ (p=0.985)
BenchmarkMandelbrot200-2            6.03ms × (1.00,1.01)    6.02ms × (1.00,1.01)  ~ (p=0.320)
BenchmarkMandelbrot200-4            6.03ms × (1.00,1.01)    6.03ms × (1.00,1.01)  ~ (p=0.799)
BenchmarkGoParse                    8.63ms × (0.89,1.10)    8.58ms × (0.93,1.09)  ~ (p=0.667)
BenchmarkGoParse-2                  8.20ms × (0.97,1.04)    8.37ms × (0.97,1.04)  +1.96% (p=0.001)
BenchmarkGoParse-4                  8.00ms × (0.98,1.02)    8.14ms × (0.99,1.02)  +1.75% (p=0.000)
BenchmarkRegexpMatchEasy0_32         162ns × (1.00,1.01)     164ns × (0.98,1.04)  +1.35% (p=0.011)
BenchmarkRegexpMatchEasy0_32-2       161ns × (1.00,1.01)     161ns × (1.00,1.00)  ~ (p=0.185)
BenchmarkRegexpMatchEasy0_32-4       161ns × (1.00,1.00)     161ns × (1.00,1.00)  -0.19% (p=0.001)
BenchmarkRegexpMatchEasy0_1K         540ns × (0.99,1.02)     566ns × (0.98,1.04)  +4.98% (p=0.000)
BenchmarkRegexpMatchEasy0_1K-2       540ns × (0.99,1.01)     557ns × (0.99,1.01)  +3.21% (p=0.000)
BenchmarkRegexpMatchEasy0_1K-4       541ns × (0.99,1.01)     559ns × (0.99,1.01)  +3.26% (p=0.000)
BenchmarkRegexpMatchEasy1_32         139ns × (0.98,1.04)     139ns × (0.99,1.03)  ~ (p=0.979)
BenchmarkRegexpMatchEasy1_32-2       139ns × (0.99,1.04)     139ns × (0.99,1.02)  ~ (p=0.777)
BenchmarkRegexpMatchEasy1_32-4       139ns × (0.98,1.04)     139ns × (0.99,1.04)  ~ (p=0.771)
BenchmarkRegexpMatchEasy1_1K         890ns × (0.99,1.03)     885ns × (1.00,1.01)  -0.50% (p=0.004)
BenchmarkRegexpMatchEasy1_1K-2       888ns × (0.99,1.01)     885ns × (0.99,1.01)  -0.37% (p=0.004)
BenchmarkRegexpMatchEasy1_1K-4       890ns × (0.99,1.02)     884ns × (1.00,1.00)  -0.70% (p=0.000)
BenchmarkRegexpMatchMedium_32        252ns × (0.99,1.01)     251ns × (0.99,1.01)  ~ (p=0.081)
BenchmarkRegexpMatchMedium_32-2      254ns × (0.99,1.04)     252ns × (0.99,1.01)  -0.78% (p=0.027)
BenchmarkRegexpMatchMedium_32-4      253ns × (0.99,1.04)     252ns × (0.99,1.01)  -0.70% (p=0.022)
BenchmarkRegexpMatchMedium_1K       72.9µs × (0.99,1.01)    72.7µs × (1.00,1.00)  ~ (p=0.064)
BenchmarkRegexpMatchMedium_1K-2     74.1µs × (0.98,1.05)    72.9µs × (1.00,1.01)  -1.61% (p=0.001)
BenchmarkRegexpMatchMedium_1K-4     73.6µs × (0.99,1.05)    72.8µs × (1.00,1.00)  -1.13% (p=0.007)
BenchmarkRegexpMatchHard_32         3.88µs × (0.99,1.03)    3.92µs × (0.98,1.05)  ~ (p=0.143)
BenchmarkRegexpMatchHard_32-2       3.89µs × (0.99,1.03)    3.93µs × (0.98,1.09)  ~ (p=0.278)
BenchmarkRegexpMatchHard_32-4       3.90µs × (0.99,1.05)    3.93µs × (0.98,1.05)  ~ (p=0.252)
BenchmarkRegexpMatchHard_1K          118µs × (0.99,1.01)     117µs × (0.99,1.02)  -0.54% (p=0.003)
BenchmarkRegexpMatchHard_1K-2        118µs × (0.99,1.01)     118µs × (0.99,1.03)  ~ (p=0.581)
BenchmarkRegexpMatchHard_1K-4        118µs × (0.99,1.02)     117µs × (0.99,1.01)  -0.54% (p=0.002)
BenchmarkRevcomp                     991ms × (0.95,1.10)     989ms × (0.94,1.08)  ~ (p=0.879)
BenchmarkRevcomp-2                   978ms × (0.95,1.11)     962ms × (0.96,1.08)  ~ (p=0.257)
BenchmarkRevcomp-4                   979ms × (0.96,1.07)     974ms × (0.96,1.11)  ~ (p=0.678)
BenchmarkTemplate                    141ms × (0.99,1.02)     145ms × (0.99,1.02)  +2.75% (p=0.000)
BenchmarkTemplate-2                  135ms × (0.98,1.02)     138ms × (0.99,1.02)  +2.34% (p=0.000)
BenchmarkTemplate-4                  136ms × (0.98,1.02)     140ms × (0.99,1.02)  +2.71% (p=0.000)
BenchmarkTimeParse                   640ns × (0.99,1.01)     622ns × (0.99,1.01)  -2.88% (p=0.000)
BenchmarkTimeParse-2                 640ns × (0.99,1.01)     622ns × (1.00,1.00)  -2.81% (p=0.000)
BenchmarkTimeParse-4                 640ns × (1.00,1.01)     622ns × (0.99,1.01)  -2.82% (p=0.000)
BenchmarkTimeFormat                  730ns × (0.98,1.02)     731ns × (0.98,1.03)  ~ (p=0.767)
BenchmarkTimeFormat-2                709ns × (0.99,1.02)     707ns × (0.99,1.02)  ~ (p=0.347)
BenchmarkTimeFormat-4                717ns × (0.98,1.01)     718ns × (0.98,1.02)  ~ (p=0.793)

Change-Id: Ie779c47e912bf80eb918bafa13638bd8dfd6c2d9
Reviewed-on: https://go-review.googlesource.com/9406
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-05-01 18:44:36 +00:00
Michael Hudson-Doyle
a1f57598cc runtime, cmd/internal/ld: rename themoduledata to firstmoduledata
'themoduledata' doesn't really make sense now we support multiple moduledata
objects.

Change-Id: I8263045d8f62a42cb523502b37289b0fba054f62
Reviewed-on: https://go-review.googlesource.com/8521
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-10 05:11:49 +00:00
Michael Hudson-Doyle
fae4a128cb runtime, reflect: support multiple moduledata objects
This changes all the places that consult themoduledata to consult a
linked list of moduledata objects, as will be necessary for
-linkshared to work.

Obviously, as there is as yet no way of adding moduledata objects to
this list, all this change achieves right now is wasting a few
instructions here and there.

Change-Id: I397af7f60d0849b76aaccedf72238fe664867051
Reviewed-on: https://go-review.googlesource.com/8231
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-10 04:51:42 +00:00
Michael Hudson-Doyle
67426a8a9e runtime, cmd/internal/ld: change runtime to use a single linker symbol
In preparation for being able to run a go program that has code
in several objects, this changes from having several linker
symbols used by the runtime into having one linker symbol that
points at a structure containing the needed data.  Multiple
object support will construct a linked list of such structures.

A follow up will initialize the slices in the themoduledata
structure directly from the linker but I was aiming for a minimal
diff for now.

Change-Id: I613cce35309801cf265a1d5ae5aaca8d689c5cbf
Reviewed-on: https://go-review.googlesource.com/7441
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-03-31 22:45:07 +00:00
Russ Cox
484f801ff4 runtime: reorganize memory code
Move code from malloc1.go, malloc2.go, mem.go, mgc0.go into
appropriate locations.

Factor mgc.go into mgc.go, mgcmark.go, mgcsweep.go, mstats.go.

A lot of this code was in certain files because the right place was in
a C file but it was written in Go, or vice versa. This is one step toward
making things actually well-organized again.

Change-Id: I6741deb88a7cfb1c17ffe0bcca3989e10207968f
Reviewed-on: https://go-review.googlesource.com/5300
Reviewed-by: Austin Clements <austin@google.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2015-02-19 20:17:01 +00:00
Dmitry Vyukov
59495e8dfd runtime: never show system goroutines in traceback
Fixes #9791

g.issystem flag setup races with other code wherever we set it.
Even if we set both in parent goroutine and in the system goroutine,
it is still possible that some other goroutine crashes
before the flag is set. We could pass issystem flag to newproc1,
but we start all goroutines with go nowadays.

Instead look at g.startpc to distinguish system goroutines (similar to topofstack).

Change-Id: Ia3467968dee27fa07d9fecedd4c2b00928f26645
Reviewed-on: https://go-review.googlesource.com/4113
Reviewed-by: Keith Randall <khr@golang.org>
2015-02-11 10:39:48 +00:00
Russ Cox
3965d7508e runtime: factor out bitmap, finalizer code from malloc/mgc
The code in mfinal.go is moved from malloc*.go and mgc*.go
and substantially unchanged.

The code in mbitmap.go is also moved from those files, but
cleaned up so that it can be called from those files (in most cases
the code being moved was not already a standalone function).
I also renamed the constants and wrote comments describing
the format. The result is a significant cleanup and isolation of
the bitmap code, but, roughly speaking, it should be treated
and reviewed as new code.

The other files changed only as much as necessary to support
this code movement.

This CL does NOT change the semantics of the heap or type
bitmaps at all, although there are now some obvious opportunities
to do so in followup CLs.

Change-Id: I41b8d5de87ad1d3cd322709931ab25e659dbb21d
Reviewed-on: https://go-review.googlesource.com/2991
Reviewed-by: Keith Randall <khr@golang.org>
2015-01-19 16:26:51 +00:00
Keith Randall
0bb8fc6614 runtime: remove go prefix from a few routines
They are no longer needed now that C is gone.

goatoi -> atoi
gofuncname/funcname -> funcname/cfuncname
goroundupsize -> already existing roundupsize

Change-Id: I278bc33d279e1fdc5e8a2a04e961c4c1573b28c7
Reviewed-on: https://go-review.googlesource.com/2154
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
2014-12-29 15:18:29 +00:00
Keith Randall
b2a950bb73 runtime: rename gothrow to throw
Rename "gothrow" to "throw" now that the C version of "throw"
is no longer needed.

This change is purely mechanical except in panic.go where the
old version of "throw" has been deleted.

sed -i "" 's/[[:<:]]gothrow[[:>:]]/throw/g' runtime/*.go

Change-Id: Icf0752299c35958b92870a97111c67bcd9159dc3
Reviewed-on: https://go-review.googlesource.com/2150
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Dave Cheney <dave@cheney.net>
2014-12-28 06:16:16 +00:00
Keith Randall
53c5226f9f runtime: make stack frames fixed size by modifying goproc/deferproc.
Calls to goproc/deferproc used to push & pop two extra arguments,
the argument size and the function to call.  Now, we allocate space
for those arguments in the outargs section so we don't have to
modify the SP.

Defers now use the stack pointer (instead of the argument pointer)
to identify which frame they are associated with.

A followon CL might simplify funcspdelta and some of the stack
walking code.

Fixes issue #8641

Change-Id: I835ec2f42f0392c5dec7cb0fe6bba6f2aed1dad8
Reviewed-on: https://go-review.googlesource.com/1601
Reviewed-by: Russ Cox <rsc@golang.org>
2014-12-23 01:08:29 +00:00
Russ Cox
b8540fc288 [dev.garbage] all: merge dev.cc (493ad916c3b1) into dev.garbage
TBR=austin
CC=golang-codereviews
https://golang.org/cl/179290043
2014-11-24 12:07:11 -05:00
Rick Hudson
8cfb084534 [dev.garbage] runtime: Turn concurrent GC on by default. Avoid write barriers for GC internal structures such as free lists.
LGTM=rsc
R=rsc
CC=golang-codereviews, rsc
https://golang.org/cl/179000043
2014-11-20 12:08:13 -05:00
Russ Cox
50e0749f87 [dev.cc] all: merge default (e4ab8f908aac) into dev.cc
TBR=austin
CC=golang-codereviews
https://golang.org/cl/179040044
2014-11-20 11:48:08 -05:00
Russ Cox
656be317d0 [dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).

Scalararg and ptrarg are also untyped and therefore error-prone.

Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.

For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.

Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).

The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.

Correct the misnomer by naming the replacement function systemstack.

Fix a few references to "M stack" in code.

The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.

This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)

LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 14:54:31 -05:00
Russ Cox
1e2d2f0947 [dev.cc] runtime: convert memory allocator and garbage collector to Go
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.

[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]

LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/167540043
2014-11-11 17:05:02 -05:00