This is a followup for CL 93156.
Fixes#22942.
Change-Id: Ic6e2de44011d041b91454353a6f2e3b0cf590060
Reviewed-on: https://go-review.googlesource.com/108095
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Use AT_TIMEKEEP ELF aux entry to access a kernel mapped ring of timehands structs.
The timehands are updated by the kernel periodically, but for accurate measure the
timecounter still needs to be queried.
Currently the fast path is used only when kern.timecounter.hardware==TSC-low
or kern.timecounter.hardware=='ARM MPCore Timecounter',
other timecounters revert back to regular system call.
TODO: add support for HPET timecounter on 386/amd64.
Change-Id: I321ca4e92be63ba21a2574b758ef5c1e729086ad
Reviewed-on: https://go-review.googlesource.com/93156
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
On systems that use kqueue, we always register descriptors for both
EVFILT_READ and EVFILT_WRITE. On at least FreeBSD and OpenBSD, when
the write end of a pipe is registered for EVFILT_READ and EVFILT_WRITE
events, and the read end of the pipe is closed, kqueue reports an
EVFILT_READ event with EV_EOF set, but does not report an EVFILT_WRITE
event. Since the write to the pipe is waiting for an EVFILT_WRITE
event, closing the read end of a pipe can cause the write end to hang
rather than attempt another write which will fail with EPIPE.
Fix this by treating EVFILT_READ with EV_EOF set as making both reads
and writes ready to proceed.
The real test for this is in CL 71770, which tests using various
timeouts with pipes.
Updates #22114
Change-Id: Ib23fbaaddbccd8eee77bdf18f27a7f0aa50e2742
Reviewed-on: https://go-review.googlesource.com/71973
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
In FreeBSD when run Go proc under a given sub-list of
processors(e.g. 'cpuset -l 0 ./a.out' in multi-core system),
runtime.NumCPU() still return all physical CPUs from sysctl
hw.ncpu instead of account from sub-list.
Fix by use syscall cpuset_getaffinity to account the number of sub-list.
Fixes#15206
Change-Id: If87c4b620e870486efa100685db5debbf1210a5b
Reviewed-on: https://go-review.googlesource.com/29341
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
In FreeBSD 10.0, the _umtx_op syscall was changed to allow sleeping on
any supported clock, but the default clock was switched from a monotonic
clock to CLOCK_REALTIME.
Prior to 10.0, the __umtx_op_wait* functions ignored the fourth argument
to _umtx_op (uaddr1), expected the fifth argument (uaddr2) to be a
struct timespec pointer, and used a monotonic clock (nanouptime(9)) for
timeout calculations.
Since 10.0, if callers want a clock other than CLOCK_REALTIME, they must
call _umtx_op with uaddr1 set to a value greater than sizeof(struct
timespec), and with uaddr2 as pointer to a struct _umtx_time, rather
than a timespec. Callers can set the _clockid field of the struct
_umtx_time to request the clock they want.
The relevant FreeBSD commit:
https://svnweb.freebsd.org/base?view=revision&revision=232144Fixes#17168
Change-Id: I3dd7b32b683622b8d7b4a6a8f9eb56401bed6bdf
Reviewed-on: https://go-review.googlesource.com/30154
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Change all Unix systems to use stackt for the alternate signal
stack (some were using sigaltstackt). Add OS-specific setSignalstackSP
function to handle different types for ss_sp field, and unify all
OS-specific signalstack functions into one. Unify handling of alternate
signal stack in OS-specific minit and sigtrampgo functions via new
functions minitSignalstack and setGsignalStack.
Change-Id: Idc316dc69b1dd725717acdf61a1cd8b9f33ed174
Reviewed-on: https://go-review.googlesource.com/29757
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
In a few cases, defs_$GOOS_$GOARCH.go already existed,
so the target here is defs1_$GOOS_$GOARCH.go.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/171490043