1
0
mirror of https://github.com/golang/go synced 2024-11-19 08:24:41 -07:00
Commit Graph

76 Commits

Author SHA1 Message Date
David Crawshaw
8df733bd22 cmd/compile: remove slices from rtype.funcType
Alternative to golang.org/cl/19852. This memory layout doesn't have
an easy type representation, but it is noticeably smaller than the
current funcType, and saves significant extra space.

Some notes on the layout are in reflect/type.go:

// A *rtype for each in and out parameter is stored in an array that
// directly follows the funcType (and possibly its uncommonType). So
// a function type with one method, one input, and one output is:
//
//	struct {
//		funcType
//		uncommonType
//		[2]*rtype    // [0] is in, [1] is out
//		uncommonTypeSliceContents
//	}

There are three arbitrary limits introduced by this CL:

1. No more than 65535 function input parameters.
2. No more than 32767 function output parameters.
3. reflect.FuncOf is limited to 128 parameters.

I don't think these are limits in practice, but are worth noting.

Reduces godoc binary size by 2.4%, 330KB.

For #6853.

Change-Id: I225c0a0516ebdbe92d41dfdf43f716da42dfe347
Reviewed-on: https://go-review.googlesource.com/19916
Reviewed-by: Russ Cox <rsc@golang.org>
Run-TryBot: David Crawshaw <crawshaw@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-09 01:25:18 +00:00
Brad Fitzpatrick
5fea2ccc77 all: single space after period.
The tree's pretty inconsistent about single space vs double space
after a period in documentation. Make it consistently a single space,
per earlier decisions. This means contributors won't be confused by
misleading precedence.

This CL doesn't use go/doc to parse. It only addresses // comments.
It was generated with:

$ perl -i -npe 's,^(\s*// .+[a-z]\.)  +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.)  +([A-Z])')
$ go test go/doc -update

Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7
Reviewed-on: https://go-review.googlesource.com/20022
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Dave Day <djd@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-02 00:13:47 +00:00
Keith Randall
8d31a86a1e reflect: mark mapassign as noescape
The lack of this annotation causes Value.SetMapIndex to allocate
when it doesn't need to.

Add comments about why it's safe to do so.

Add a test to make sure we stay allocation-free.

Change-Id: I00826e0d73e317a31bdeae5c7e46bf95b0c6ae6a
Reviewed-on: https://go-review.googlesource.com/17060
Reviewed-by: David Chase <drchase@google.com>
2015-11-19 21:35:58 +00:00
Marcel van Lohuizen
adf9b30e55 reflect: adjust access to unexported embedded structs
This CL changes reflect to allow access to exported fields and
methods in unexported embedded structs for gccgo and after gc
has been adjusted to disallow access to embedded unexported structs.

Adresses #12367, #7363, #11007, and #7247.

Change-Id: If80536eab35abcd25300d8ddc2d27d5c42d7e78e
Reviewed-on: https://go-review.googlesource.com/14010
Reviewed-by: Russ Cox <rsc@golang.org>
2015-10-26 10:14:38 +00:00
Robert Griesemer
3cfc34a555 reflect: fix doc string
Fixes #12017.

Change-Id: I3dfcf9d0b62cae02eca1973383f0aad286a6ef4d
Reviewed-on: https://go-review.googlesource.com/13136
Reviewed-by: Keith Randall <khr@golang.org>
2015-08-04 21:10:58 +00:00
Russ Cox
512f75e8df runtime: replace GC programs with simpler encoding, faster decoder
Small types record the location of pointers in their memory layout
by using a simple bitmap. In Go 1.4 the bitmap held 4-bit entries,
and in Go 1.5 the bitmap holds 1-bit entries, but in both cases using
a bitmap for a large type containing arrays does not make sense:
if someone refers to the type [1<<28]*byte in a program in such
a way that the type information makes it into the binary, it would be
a waste of space to write a 128 MB (for 4-bit entries) or even 32 MB
(for 1-bit entries) bitmap full of 1s into the binary or even to keep
one in memory during the execution of the program.

For large types containing arrays, it is much more compact to describe
the locations of pointers using a notation that can express repetition
than to lay out a bitmap of pointers. Go 1.4 included such a notation,
called ``GC programs'' but it was complex, required recursion during
decoding, and was generally slow. Dmitriy measured the execution of
these programs writing directly to the heap bitmap as being 7x slower
than copying from a preunrolled 4-bit mask (and frankly that code was
not terribly fast either). For some tests, unrollgcprog1 was seen costing
as much as 3x more than the rest of malloc combined.

This CL introduces a different form for the GC programs. They use a
simple Lempel-Ziv-style encoding of the 1-bit pointer information,
in which the only operations are (1) emit the following n bits
and (2) repeat the last n bits c more times. This encoding can be
generated directly from the Go type information (using repetition
only for arrays or large runs of non-pointer data) and it can be decoded
very efficiently. In particular the decoding requires little state and
no recursion, so that the entire decoding can run without any memory
accesses other than the reads of the encoding and the writes of the
decoded form to the heap bitmap. For recursive types like arrays of
arrays of arrays, the inner instructions are only executed once, not
n times, so that large repetitions run at full speed. (In contrast, large
repetitions in the old programs repeated the individual bit-level layout
of the inner data over and over.) The result is as much as 25x faster
decoding compared to the old form.

Because the old decoder was so slow, Go 1.4 had three (or so) cases
for how to set the heap bitmap bits for an allocation of a given type:

(1) If the type had an even number of words up to 32 words, then
the 4-bit pointer mask for the type fit in no more than 16 bytes;
store the 4-bit pointer mask directly in the binary and copy from it.

(1b) If the type had an odd number of words up to 15 words, then
the 4-bit pointer mask for the type, doubled to end on a byte boundary,
fit in no more than 16 bytes; store that doubled mask directly in the
binary and copy from it.

(2) If the type had an even number of words up to 128 words,
or an odd number of words up to 63 words (again due to doubling),
then the 4-bit pointer mask would fit in a 64-byte unrolled mask.
Store a GC program in the binary, but leave space in the BSS for
the unrolled mask. Execute the GC program to construct the mask the
first time it is needed, and thereafter copy from the mask.

(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.
(This is the case that was 7x slower than the other two.)

Because the new pointer masks store 1-bit entries instead of 4-bit
entries and because using the decoder no longer carries a significant
overhead, after this CL (that is, for Go 1.5) there are only two cases:

(1) If the type is 128 words or less (no condition about odd or even),
store the 1-bit pointer mask directly in the binary and use it to
initialize the heap bitmap during malloc. (Implemented in CL 9702.)

(2) There is no case 2 anymore.

(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.

Executing the GC program directly into the heap bitmap (case (3) above)
was disabled for the Go 1.5 dev cycle, both to avoid needing to use
GC programs for typedmemmove and to avoid updating that code as
the heap bitmap format changed. Typedmemmove no longer uses this
type information; as of CL 9886 it uses the heap bitmap directly.
Now that the heap bitmap format is stable, we reintroduce GC programs
and their space savings.

Benchmarks for heapBitsSetType, before this CL vs this CL:

name                    old mean               new mean              delta
SetTypePtr              7.59ns × (0.99,1.02)   5.16ns × (1.00,1.00)  -32.05% (p=0.000)
SetTypePtr8             21.0ns × (0.98,1.05)   21.4ns × (1.00,1.00)     ~    (p=0.179)
SetTypePtr16            24.1ns × (0.99,1.01)   24.6ns × (1.00,1.00)   +2.41% (p=0.001)
SetTypePtr32            31.2ns × (0.99,1.01)   32.4ns × (0.99,1.02)   +3.72% (p=0.001)
SetTypePtr64            45.2ns × (1.00,1.00)   47.2ns × (1.00,1.00)   +4.42% (p=0.000)
SetTypePtr126           75.8ns × (0.99,1.01)   79.1ns × (1.00,1.00)   +4.25% (p=0.000)
SetTypePtr128           74.3ns × (0.99,1.01)   77.6ns × (1.00,1.01)   +4.55% (p=0.000)
SetTypePtrSlice          726ns × (1.00,1.01)    712ns × (1.00,1.00)   -1.95% (p=0.001)
SetTypeNode1            20.0ns × (0.99,1.01)   20.7ns × (1.00,1.00)   +3.71% (p=0.000)
SetTypeNode1Slice        112ns × (1.00,1.00)    113ns × (0.99,1.00)     ~    (p=0.070)
SetTypeNode8            23.9ns × (1.00,1.00)   24.7ns × (1.00,1.01)   +3.18% (p=0.000)
SetTypeNode8Slice        294ns × (0.99,1.02)    287ns × (0.99,1.01)   -2.38% (p=0.015)
SetTypeNode64           52.8ns × (0.99,1.03)   51.8ns × (0.99,1.01)     ~    (p=0.069)
SetTypeNode64Slice      1.13µs × (0.99,1.05)   1.14µs × (0.99,1.00)     ~    (p=0.767)
SetTypeNode64Dead       36.0ns × (1.00,1.01)   32.5ns × (0.99,1.00)   -9.67% (p=0.000)
SetTypeNode64DeadSlice  1.43µs × (0.99,1.01)   1.40µs × (1.00,1.00)   -2.39% (p=0.001)
SetTypeNode124          75.7ns × (1.00,1.01)   79.0ns × (1.00,1.00)   +4.44% (p=0.000)
SetTypeNode124Slice     1.94µs × (1.00,1.01)   2.04µs × (0.99,1.01)   +4.98% (p=0.000)
SetTypeNode126          75.4ns × (1.00,1.01)   77.7ns × (0.99,1.01)   +3.11% (p=0.000)
SetTypeNode126Slice     1.95µs × (0.99,1.01)   2.03µs × (1.00,1.00)   +3.74% (p=0.000)
SetTypeNode128          85.4ns × (0.99,1.01)  122.0ns × (1.00,1.00)  +42.89% (p=0.000)
SetTypeNode128Slice     2.20µs × (1.00,1.01)   2.36µs × (0.98,1.02)   +7.48% (p=0.001)
SetTypeNode130          83.3ns × (1.00,1.00)  123.0ns × (1.00,1.00)  +47.61% (p=0.000)
SetTypeNode130Slice     2.30µs × (0.99,1.01)   2.40µs × (0.98,1.01)   +4.37% (p=0.000)
SetTypeNode1024          498ns × (1.00,1.00)    537ns × (1.00,1.00)   +7.96% (p=0.000)
SetTypeNode1024Slice    15.5µs × (0.99,1.01)   17.8µs × (1.00,1.00)  +15.27% (p=0.000)

The above compares always using a cached pointer mask (and the
corresponding waste of memory) against using the programs directly.
Some slowdown is expected, in exchange for having a better general algorithm.
The GC programs kick in for SetTypeNode128, SetTypeNode130, SetTypeNode1024,
along with the slice variants of those.
It is possible that the cutoff of 128 words (bits) should be raised
in a followup CL, but even with this low cutoff the GC programs are
faster than Go 1.4's "fast path" non-GC program case.

Benchmarks for heapBitsSetType, Go 1.4 vs this CL:

name                    old mean              new mean              delta
SetTypePtr              6.89ns × (1.00,1.00)  5.17ns × (1.00,1.00)  -25.02% (p=0.000)
SetTypePtr8             25.8ns × (0.97,1.05)  21.5ns × (1.00,1.00)  -16.70% (p=0.000)
SetTypePtr16            39.8ns × (0.97,1.02)  24.7ns × (0.99,1.01)  -37.81% (p=0.000)
SetTypePtr32            68.8ns × (0.98,1.01)  32.2ns × (1.00,1.01)  -53.18% (p=0.000)
SetTypePtr64             130ns × (1.00,1.00)    47ns × (1.00,1.00)  -63.67% (p=0.000)
SetTypePtr126            241ns × (0.99,1.01)    79ns × (1.00,1.01)  -67.25% (p=0.000)
SetTypePtr128           2.07µs × (1.00,1.00)  0.08µs × (1.00,1.00)  -96.27% (p=0.000)
SetTypePtrSlice         1.05µs × (0.99,1.01)  0.72µs × (0.99,1.02)  -31.70% (p=0.000)
SetTypeNode1            16.0ns × (0.99,1.01)  20.8ns × (0.99,1.03)  +29.91% (p=0.000)
SetTypeNode1Slice        184ns × (0.99,1.01)   112ns × (0.99,1.01)  -39.26% (p=0.000)
SetTypeNode8            29.5ns × (0.97,1.02)  24.6ns × (1.00,1.00)  -16.50% (p=0.000)
SetTypeNode8Slice        624ns × (0.98,1.02)   285ns × (1.00,1.00)  -54.31% (p=0.000)
SetTypeNode64            135ns × (0.96,1.08)    52ns × (0.99,1.02)  -61.32% (p=0.000)
SetTypeNode64Slice      3.83µs × (1.00,1.00)  1.14µs × (0.99,1.01)  -70.16% (p=0.000)
SetTypeNode64Dead        134ns × (0.99,1.01)    32ns × (1.00,1.01)  -75.74% (p=0.000)
SetTypeNode64DeadSlice  3.83µs × (0.99,1.00)  1.40µs × (1.00,1.01)  -63.42% (p=0.000)
SetTypeNode124           240ns × (0.99,1.01)    79ns × (1.00,1.01)  -67.05% (p=0.000)
SetTypeNode124Slice     7.27µs × (1.00,1.00)  2.04µs × (1.00,1.00)  -71.95% (p=0.000)
SetTypeNode126          2.06µs × (0.99,1.01)  0.08µs × (0.99,1.01)  -96.23% (p=0.000)
SetTypeNode126Slice     64.4µs × (1.00,1.00)   2.0µs × (1.00,1.00)  -96.85% (p=0.000)
SetTypeNode128          2.09µs × (1.00,1.01)  0.12µs × (1.00,1.00)  -94.15% (p=0.000)
SetTypeNode128Slice     65.4µs × (1.00,1.00)   2.4µs × (0.99,1.03)  -96.39% (p=0.000)
SetTypeNode130          2.11µs × (1.00,1.00)  0.12µs × (1.00,1.00)  -94.18% (p=0.000)
SetTypeNode130Slice     66.3µs × (1.00,1.00)   2.4µs × (0.97,1.08)  -96.34% (p=0.000)
SetTypeNode1024         16.0µs × (1.00,1.01)   0.5µs × (1.00,1.00)  -96.65% (p=0.000)
SetTypeNode1024Slice     512µs × (1.00,1.00)    18µs × (0.98,1.04)  -96.45% (p=0.000)

SetTypeNode124 uses a 124 data + 2 ptr = 126-word allocation.
Both Go 1.4 and this CL are using pointer bitmaps for this case,
so that's an overall 3x speedup for using pointer bitmaps.

SetTypeNode128 uses a 128 data + 2 ptr = 130-word allocation.
Both Go 1.4 and this CL are running the GC program for this case,
so that's an overall 17x speedup when using GC programs (and
I've seen >20x on other systems).

Comparing Go 1.4's SetTypeNode124 (pointer bitmap) against
this CL's SetTypeNode128 (GC program), the slow path in the
code in this CL is 2x faster than the fast path in Go 1.4.

The Go 1 benchmarks are basically unaffected compared to just before this CL.

Go 1 benchmarks, before this CL vs this CL:

name                   old mean              new mean              delta
BinaryTree17            5.87s × (0.97,1.04)   5.91s × (0.96,1.04)    ~    (p=0.306)
Fannkuch11              4.38s × (1.00,1.00)   4.37s × (1.00,1.01)  -0.22% (p=0.006)
FmtFprintfEmpty        90.7ns × (0.97,1.10)  89.3ns × (0.96,1.09)    ~    (p=0.280)
FmtFprintfString        282ns × (0.98,1.04)   287ns × (0.98,1.07)  +1.72% (p=0.039)
FmtFprintfInt           269ns × (0.99,1.03)   282ns × (0.97,1.04)  +4.87% (p=0.000)
FmtFprintfIntInt        478ns × (0.99,1.02)   481ns × (0.99,1.02)  +0.61% (p=0.048)
FmtFprintfPrefixedInt   399ns × (0.98,1.03)   400ns × (0.98,1.05)    ~    (p=0.533)
FmtFprintfFloat         563ns × (0.99,1.01)   570ns × (1.00,1.01)  +1.37% (p=0.000)
FmtManyArgs            1.89µs × (0.99,1.01)  1.92µs × (0.99,1.02)  +1.88% (p=0.000)
GobDecode              15.2ms × (0.99,1.01)  15.2ms × (0.98,1.05)    ~    (p=0.609)
GobEncode              11.6ms × (0.98,1.03)  11.9ms × (0.98,1.04)  +2.17% (p=0.000)
Gzip                    648ms × (0.99,1.01)   648ms × (1.00,1.01)    ~    (p=0.835)
Gunzip                  142ms × (1.00,1.00)   143ms × (1.00,1.01)    ~    (p=0.169)
HTTPClientServer       90.5µs × (0.98,1.03)  91.5µs × (0.98,1.04)  +1.04% (p=0.045)
JSONEncode             31.5ms × (0.98,1.03)  31.4ms × (0.98,1.03)    ~    (p=0.549)
JSONDecode              111ms × (0.99,1.01)   107ms × (0.99,1.01)  -3.21% (p=0.000)
Mandelbrot200          6.01ms × (1.00,1.00)  6.01ms × (1.00,1.00)    ~    (p=0.878)
GoParse                6.54ms × (0.99,1.02)  6.61ms × (0.99,1.03)  +1.08% (p=0.004)
RegexpMatchEasy0_32     160ns × (1.00,1.01)   161ns × (1.00,1.00)  +0.40% (p=0.000)
RegexpMatchEasy0_1K     560ns × (0.99,1.01)   559ns × (0.99,1.01)    ~    (p=0.088)
RegexpMatchEasy1_32     138ns × (0.99,1.01)   138ns × (1.00,1.00)    ~    (p=0.380)
RegexpMatchEasy1_1K     877ns × (1.00,1.00)   878ns × (1.00,1.00)    ~    (p=0.157)
RegexpMatchMedium_32    251ns × (0.99,1.00)   251ns × (1.00,1.01)  +0.28% (p=0.021)
RegexpMatchMedium_1K   72.6µs × (1.00,1.00)  72.6µs × (1.00,1.00)    ~    (p=0.539)
RegexpMatchHard_32     3.84µs × (1.00,1.00)  3.84µs × (1.00,1.00)    ~    (p=0.378)
RegexpMatchHard_1K      117µs × (1.00,1.00)   117µs × (1.00,1.00)    ~    (p=0.067)
Revcomp                 904ms × (0.99,1.02)   904ms × (0.99,1.01)    ~    (p=0.943)
Template                125ms × (0.99,1.02)   127ms × (0.99,1.01)  +1.79% (p=0.000)
TimeParse               627ns × (0.99,1.01)   622ns × (0.99,1.01)  -0.88% (p=0.000)
TimeFormat              655ns × (0.99,1.02)   655ns × (0.99,1.02)    ~    (p=0.976)

For the record, Go 1 benchmarks, Go 1.4 vs this CL:

name                   old mean              new mean              delta
BinaryTree17            4.61s × (0.97,1.05)   5.91s × (0.98,1.03)  +28.35% (p=0.000)
Fannkuch11              4.40s × (0.99,1.03)   4.41s × (0.99,1.01)     ~    (p=0.212)
FmtFprintfEmpty         102ns × (0.99,1.01)    84ns × (0.99,1.02)  -18.38% (p=0.000)
FmtFprintfString        302ns × (0.98,1.01)   303ns × (0.99,1.02)     ~    (p=0.203)
FmtFprintfInt           313ns × (0.97,1.05)   270ns × (0.99,1.01)  -13.69% (p=0.000)
FmtFprintfIntInt        524ns × (0.98,1.02)   477ns × (0.99,1.00)   -8.87% (p=0.000)
FmtFprintfPrefixedInt   424ns × (0.98,1.02)   386ns × (0.99,1.01)   -8.96% (p=0.000)
FmtFprintfFloat         652ns × (0.98,1.02)   594ns × (0.97,1.05)   -8.97% (p=0.000)
FmtManyArgs            2.13µs × (0.99,1.02)  1.94µs × (0.99,1.01)   -8.92% (p=0.000)
GobDecode              17.1ms × (0.99,1.02)  14.9ms × (0.98,1.03)  -13.07% (p=0.000)
GobEncode              13.5ms × (0.98,1.03)  11.5ms × (0.98,1.03)  -15.25% (p=0.000)
Gzip                    656ms × (0.99,1.02)   647ms × (0.99,1.01)   -1.29% (p=0.000)
Gunzip                  143ms × (0.99,1.02)   144ms × (0.99,1.01)     ~    (p=0.204)
HTTPClientServer       88.2µs × (0.98,1.02)  90.8µs × (0.98,1.01)   +2.93% (p=0.000)
JSONEncode             32.2ms × (0.98,1.02)  30.9ms × (0.97,1.04)   -4.06% (p=0.001)
JSONDecode              121ms × (0.98,1.02)   110ms × (0.98,1.05)   -8.95% (p=0.000)
Mandelbrot200          6.06ms × (0.99,1.01)  6.11ms × (0.98,1.04)     ~    (p=0.184)
GoParse                6.76ms × (0.97,1.04)  6.58ms × (0.98,1.05)   -2.63% (p=0.003)
RegexpMatchEasy0_32     195ns × (1.00,1.01)   155ns × (0.99,1.01)  -20.43% (p=0.000)
RegexpMatchEasy0_1K     479ns × (0.98,1.03)   535ns × (0.99,1.02)  +11.59% (p=0.000)
RegexpMatchEasy1_32     169ns × (0.99,1.02)   131ns × (0.99,1.03)  -22.44% (p=0.000)
RegexpMatchEasy1_1K    1.53µs × (0.99,1.01)  0.87µs × (0.99,1.02)  -43.07% (p=0.000)
RegexpMatchMedium_32    334ns × (0.99,1.01)   242ns × (0.99,1.01)  -27.53% (p=0.000)
RegexpMatchMedium_1K    125µs × (1.00,1.01)    72µs × (0.99,1.03)  -42.53% (p=0.000)
RegexpMatchHard_32     6.03µs × (0.99,1.01)  3.79µs × (0.99,1.01)  -37.12% (p=0.000)
RegexpMatchHard_1K      189µs × (0.99,1.02)   115µs × (0.99,1.01)  -39.20% (p=0.000)
Revcomp                 935ms × (0.96,1.03)   926ms × (0.98,1.02)     ~    (p=0.083)
Template                146ms × (0.97,1.05)   119ms × (0.99,1.01)  -18.37% (p=0.000)
TimeParse               660ns × (0.99,1.01)   624ns × (0.99,1.02)   -5.43% (p=0.000)
TimeFormat              670ns × (0.98,1.02)   710ns × (1.00,1.01)   +5.97% (p=0.000)

This CL is a bit larger than I would like, but the compiler, linker, runtime,
and package reflect all need to be in sync about the format of these programs,
so there is no easy way to split this into independent changes (at least
while keeping the build working at each change).

Fixes #9625.
Fixes #10524.

Change-Id: I9e3e20d6097099d0f8532d1cb5b1af528804989a
Reviewed-on: https://go-review.googlesource.com/9888
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Russ Cox <rsc@golang.org>
2015-05-16 00:38:17 +00:00
Sebastien Binet
e00e65638a reflect: use arrayAt consistently
This change refactors reflect.Value to consistently use arrayAt when an element
of an array of bytes is indexed.

This effectively replaces:
 arr := unsafe.Pointer(...)
 arri := unsafe.Pointer(uintptr(arr) + uintptr(i)*elementSize)

with:
 arr := unsafe.Pointer(...)
 arri := arrayAt(arr, i, elementSize)

Change-Id: I53ffd0d6de693b43d5c10c0aa4cd6d4f5e95a1e3
Reviewed-on: https://go-review.googlesource.com/9183
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-21 17:29:25 +00:00
Sebastien Binet
918fdae348 reflect: implement ArrayOf
This change exposes reflect.ArrayOf to create new reflect.Type array
types at runtime, when given a reflect.Type element.

- reflect: implement ArrayOf
- reflect: tests for ArrayOf
- runtime: document that typeAlg is used by reflect and must be kept in
  synchronized

Fixes #5996.

Change-Id: I5d07213364ca915c25612deea390507c19461758
Reviewed-on: https://go-review.googlesource.com/4111
Reviewed-by: Keith Randall <khr@golang.org>
2015-04-21 15:21:09 +00:00
Rob Pike
049b89dc6f fmt: treat reflect.Value specially - as the value it holds
When a reflect.Value is passed to Printf (etc.), fmt called the
String method, which does not disclose its contents. To get the
contents, one could call Value.Interface(), but that is illegal
if the Value is not exported or otherwise forbidden.

This CL improves the situation with a trivial change to the
fmt package: when we see a reflect.Value as an argument,
we treat it exactly as we treat a reflect.Value we make inside
the package. This means that we always print the
contents of the Value as if _that_ was the argument to Printf.

This is arguably a breaking change but I think it is a genuine
improvement and no greater a break than many other tweaks
we have made to formatted output from this package.

Fixes #8965.

Change-Id: Ifc2a4ce3c1134ad5160e101d2196c22f1542faab
Reviewed-on: https://go-review.googlesource.com/8731
Reviewed-by: roger peppe <rogpeppe@gmail.com>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-04-15 15:59:39 +00:00
Josh Bleecher Snyder
2adc4e8927 all: use "reports whether" in place of "returns true if(f)"
Comment changes only.

Change-Id: I56848814564c4aa0988b451df18bebdfc88d6d94
Reviewed-on: https://go-review.googlesource.com/7721
Reviewed-by: Rob Pike <r@golang.org>
2015-03-18 15:14:06 +00:00
Keith Randall
cd5b144d98 runtime,reflect,cmd/internal/gc: Fix comments referring to .c/.h files
Everything has moved to Go, but comments still refer to .c/.h files.
Fix all of those up, at least for these three directories.

Fixes #10138

Change-Id: Ie5efe89b247841e0b3f82aac5256b2c606ef67dc
Reviewed-on: https://go-review.googlesource.com/7431
Reviewed-by: Russ Cox <rsc@golang.org>
2015-03-11 20:19:43 +00:00
Mark Bucciarelli
4e408e0cc9 Call --> CallSlice in two spots. No logic change, docs only.
Change-Id: I6011e162214db2d65efc1ecdb5ec600ca8e5bfe9
Reviewed-on: https://go-review.googlesource.com/5542
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-02-22 17:22:04 +00:00
Dmitry Vyukov
84e2567537 reflect: mark map access functions as go:noescape
benchmark                                  old allocs     new allocs     delta
BenchmarkSkipValue                         14914          14202          -4.77%

Change-Id: I40e1fe8843cc6a099a2abfcd814ecc2a2d6a5b1f
Reviewed-on: https://go-review.googlesource.com/3744
Reviewed-by: Keith Randall <khr@golang.org>
2015-02-11 10:37:45 +00:00
Dmitry Vyukov
67f8a81316 reflect: cache call frames
Call frame allocations can account for significant portion
of all allocations in a program, if call is executed
in an inner loop (e.g. to process every line in a log).
On the other hand, the allocation is easy to remove
using sync.Pool since the allocation is strictly scoped.

benchmark           old ns/op     new ns/op     delta
BenchmarkCall       634           338           -46.69%
BenchmarkCall-4     496           167           -66.33%

benchmark           old allocs     new allocs     delta
BenchmarkCall       1              0              -100.00%
BenchmarkCall-4     1              0              -100.00%

Update #7818

Change-Id: Icf60cce0a9be82e6171f0c0bd80dee2393db54a7
Reviewed-on: https://go-review.googlesource.com/1954
Reviewed-by: Keith Randall <khr@golang.org>
2015-01-28 08:40:26 +00:00
Ian Lance Taylor
c5f810f058 reflect: remove extra word in comment
Change-Id: I06881fc447a5fae0067557c317f69a0427bed337
Reviewed-on: https://go-review.googlesource.com/2760
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2015-01-13 18:55:15 +00:00
Russ Cox
df027aceb9 reflect: add write barriers
Use typedmemmove, typedslicecopy, and adjust reflect.call
to execute the necessary write barriers.

Found with GODEBUG=wbshadow=2 mode.
Eventually that will run automatically, but right now
it still detects other missing write barriers.

Change-Id: Iec5b5b0c1be5589295e28e5228e37f1a92e07742
Reviewed-on: https://go-review.googlesource.com/2312
Reviewed-by: Keith Randall <khr@golang.org>
2015-01-06 00:28:31 +00:00
Shenghou Ma
a1c9e10371 reflect: document that Values can't be compared directly
Fixes #9504.

Change-Id: I148f407ace3d1b4db3f19fbb8561d1ee6c4c13b3
Reviewed-on: https://go-review.googlesource.com/2273
Reviewed-by: Rob Pike <r@golang.org>
2015-01-05 09:11:44 +00:00
Ian Lance Taylor
7b9c5ec24b reflect: allocate correct type in assignTo and cvtT2I
I came across this while debugging a GC problem in gccgo.
There is code in assignTo and cvtT2I that handles assignment
to all interface values.  It allocates an empty interface even
if the real type is a non-empty interface.  The fields are
then set for a non-empty interface, but the memory is recorded
as holding an empty interface.  This means that the GC has
incorrect information.

This is extremely unlikely to fail, because the code in the GC
that handles empty interfaces looks like this:

obj = nil;
typ = eface->type;
if(typ != nil) {
        if(!(typ->kind&KindDirectIface) || !(typ->kind&KindNoPointers))
                obj = eface->data;

In the current runtime the condition is always true--if
KindDirectIface is set, then KindNoPointers is clear--and we
always want to set obj = eface->data.  So the question is what
happens when we incorrectly store a non-empty interface value
in memory marked as an empty interface.  In that case
eface->type will not be a *rtype as we expect, but will
instead be a pointer to an Itab.  We are going to use this
pointer to look at a *rtype kind field.  The *rtype struct
starts out like this:

type rtype struct {
        size          uintptr
        hash          uint32            // hash of type; avoids computation in hash tables
        _             uint8             // unused/padding
        align         uint8             // alignment of variable with this type
        fieldAlign    uint8             // alignment of struct field with this type
        kind          uint8             // enumeration for C

An Itab always has at least two pointers, so on a
little-endian 64-bit system the kind field will be the high
byte of the second pointer.  This will normally be zero, so
the test of typ->kind will succeed, which is what we want.

On a 32-bit system it might be possible to construct a failing
case by somehow getting the Itab for an interface with one
method to be immediately followed by a word that is all ones.
The effect would be that the test would sometimes fail and the
GC would not mark obj, leading to an invalid dangling
pointer.  I have not tried to construct this test.

I noticed this in gccgo, where this error is much more likely
to cause trouble for a rather random reason: gccgo uses a
different layout of rtype, and in gccgo the kind field happens
to be the low byte of a pointer, not the high byte.

LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/155450044
2014-10-20 10:43:43 -07:00
Russ Cox
0d81b72e1b reflect: a few microoptimizations
Replace i < 0 || i >= x with uint(i) >= uint(x).
Shorten a few other code sequences.
Move the kind bits to the bottom of the flag word, to avoid shifts.

LGTM=r
R=r, bradfitz
CC=golang-codereviews
https://golang.org/cl/159020043
2014-10-17 12:54:31 -04:00
Russ Cox
a1616d4a32 reflect: shorten value to 3 words
scalar is no longer needed, now that
interfaces always hold pointers.

Comparing best of 5 with TurboBoost turned off,
on a 2012 Retina MacBook Pro Core i5.
Still not completely confident in these numbers,
but the gob and template improvements seem real.

benchmark                       old ns/op   new ns/op   delta
BenchmarkBinaryTree17           3819892491  3803008185  -0.44%
BenchmarkFannkuch11             3623876405  3611776426  -0.33%
BenchmarkFmtFprintfEmpty        119         118         -0.84%
BenchmarkFmtFprintfString       294         292         -0.68%
BenchmarkFmtFprintfInt          310         304         -1.94%
BenchmarkFmtFprintfIntInt       513         507         -1.17%
BenchmarkFmtFprintfPrefixedInt  427         426         -0.23%
BenchmarkFmtFprintfFloat        562         554         -1.42%
BenchmarkFmtManyArgs            1873        1832        -2.19%
BenchmarkGobDecode              15824504    14746565    -6.81%
BenchmarkGobEncode              14347378    14208743    -0.97%
BenchmarkGzip                   537229271   537973492   +0.14%
BenchmarkGunzip                 134996775   135406149   +0.30%
BenchmarkHTTPClientServer       119065      116937      -1.79%
BenchmarkJSONEncode             29134359    28928099    -0.71%
BenchmarkJSONDecode             106867289   105770161   -1.03%
BenchmarkMandelbrot200          5798475     5791433     -0.12%
BenchmarkGoParse                5299169     5379201     +1.51%
BenchmarkRegexpMatchEasy0_32    195         195         +0.00%
BenchmarkRegexpMatchEasy0_1K    477         477         +0.00%
BenchmarkRegexpMatchEasy1_32    170         170         +0.00%
BenchmarkRegexpMatchEasy1_1K    1412        1397        -1.06%
BenchmarkRegexpMatchMedium_32   336         337         +0.30%
BenchmarkRegexpMatchMedium_1K   109025      108977      -0.04%
BenchmarkRegexpMatchHard_32     5854        5856        +0.03%
BenchmarkRegexpMatchHard_1K     184914      184748      -0.09%
BenchmarkRevcomp                829233526   836598734   +0.89%
BenchmarkTemplate               142055312   137016166   -3.55%
BenchmarkTimeParse              598         597         -0.17%
BenchmarkTimeFormat             564         568         +0.71%

Fixes #7425.

LGTM=r
R=golang-codereviews, r
CC=golang-codereviews, iant, khr
https://golang.org/cl/158890043
2014-10-15 14:24:18 -04:00
Russ Cox
94950afdf8 reflect: add fast path for FieldByIndex with len(index) = 1
LGTM=r
R=r
CC=golang-codereviews
https://golang.org/cl/152640043
2014-10-15 13:33:00 -04:00
Russ Cox
62d3202aaa reflect: fix IsValid vs Kind mismatch after Elem of nil interface
LGTM=r
R=r
CC=golang-codereviews
https://golang.org/cl/151960044
2014-10-01 16:51:32 -04:00
Russ Cox
dd8f29e3fe reflect: adjust Value.String to give correct answer for methods
Fixes #7859.

LGTM=r
R=adonovan, r
CC=golang-codereviews
https://golang.org/cl/136710043
2014-09-18 21:19:18 -04:00
Russ Cox
f0d44dbeaf runtime: look up arg stackmap for makeFuncStub/methodValueStub during traceback
makeFuncStub and methodValueStub are used by reflect as
generic function implementations. Each call might have
different arguments. Extract those arguments from the
closure data instead of assuming it is the same each time.

Because the argument map is now being extracted from the
function itself, we don't need the special cases in reflect.Call
anymore, so delete those.

Fixes an occasional crash seen when stack copying does
not update makeFuncStub's arguments correctly.

Will also help make it safe to require stack maps in the
garbage collector.

Derived from CL 142000044 by khr.

LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/143890044
2014-09-12 07:29:19 -04:00
Keith Randall
b78d7b75c7 reflect: use runtime's memmove instead of its own
They will both need write barriers at some point.
But until then, no reason why we shouldn't share.

LGTM=rsc
R=golang-codereviews, rsc
CC=golang-codereviews
https://golang.org/cl/141330043
2014-09-10 12:37:28 -07:00
Russ Cox
c007ce824d build: move package sources from src/pkg to src
Preparation was in CL 134570043.
This CL contains only the effect of 'hg mv src/pkg/* src'.
For more about the move, see golang.org/s/go14nopkg.
2014-09-08 00:08:51 -04:00