We were failing ^uint16(0xffff) == 0, as we computed 0xffff0000 instead.
I could only trigger a failure for the above case, the other two tests
^uint16(0xfffe) == 1 and -uint16(0xffff) == 1 didn't seem to fail
previously. Somehow they get MOVHUs inserted for other reasons (used
by CMP instead of TST?). I fixed OMINUS anyway, better safe than
sorry.
Fixes#9604
Change-Id: I4c2d5bdc667742873ac029fdbe3db0cf12893c27
Reviewed-on: https://go-review.googlesource.com/2940
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Recognize loops of the form
for i := range a {
a[i] = zero
}
in which the evaluation of a is free from side effects.
Replace these loops with calls to memclr.
This occurs in the stdlib in 18 places.
The motivating example is clearing a byte slice:
benchmark old ns/op new ns/op delta
BenchmarkGoMemclr5 3.31 3.26 -1.51%
BenchmarkGoMemclr16 13.7 3.28 -76.06%
BenchmarkGoMemclr64 50.8 4.14 -91.85%
BenchmarkGoMemclr256 157 6.02 -96.17%
Update #5373.
Change-Id: I99d3e6f5f268e8c6499b7e661df46403e5eb83e4
Reviewed-on: https://go-review.googlesource.com/2520
Reviewed-by: Keith Randall <khr@golang.org>
This test was taking a long time, reduce its zealousness.
Change-Id: Ib824247b84b0039a9ec690f72336bef3738d4c44
Reviewed-on: https://go-review.googlesource.com/2502
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Reviewed-by: Minux Ma <minux@golang.org>
These tests were enabled as part of change 1774.
They depend on the errchk tool, which is a Perl
script. However, Perl is not available on Plan 9.
Change-Id: I82707aae16013acc9a3800d39b0084588b852b53
Reviewed-on: https://go-review.googlesource.com/2031
Reviewed-by: Minux Ma <minux@golang.org>
Broken by e7173dfdfd
Fix by simply disabling the relevant tests.
* bug248 and bug345 require errchk, but we can't
rely on perl being available.
* bug369 is disabled anyway.
Change-Id: Idf73ebccb066943e3fe17c2f662b37238ec74dfe
Reviewed-on: https://go-review.googlesource.com/2052
Reviewed-by: Alex Brainman <alex.brainman@gmail.com>
Gccgo creates a struct to hold the arguments for the deferred
function. In this example the struct holds a type defined in a
different package. The bug was that gccgo tried to create an equality
function for this struct, and it implemented that function by calling
the equality function for the type defined in the other package.
Since that type is not exported, the reference to the equality
function failed at link time. Normally it is impossible for a struct
to directly contain a member that is an unexported type from another
package, but in this specific case it was possible. Fixed in gccgo
with https://codereview.appspot.com/183500043 .
Change-Id: I8ec3a33631225b9ac2a4ac060cb4d10b4635e60b
Reviewed-on: https://go-review.googlesource.com/1690
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
* bug248, bug345, bug369, and bug429 were ported from bash commands to run scripts. bug369 remains disabled.
* bug395 is a test for issue 1909, which is still open. It is marked as skip now and will be usable with compile with run.go when issue 1909 is fixed.
Fixes#4139
Updates #1909
Change-Id: Ibb5fbfb5cf72ddc285829245318eeacd3fb5a636
Reviewed-on: https://go-review.googlesource.com/1774
Reviewed-by: Russ Cox <rsc@golang.org>
When we do y = &x for global variables x and y, y gets initialized
at link time. Do the same for y = &x.f if x is a struct and y=&x[5]
if x is an array.
fixes#9217fixes#9355
Change-Id: Iea3c0ce2ce1b309e2b760e345608fd95460b5713
Reviewed-on: https://go-review.googlesource.com/1691
Reviewed-by: Minux Ma <minux@golang.org>
Gccgo incorrectly executed functions multiple times when they appeared
in a composite literal that required a conversion between different
interface types.
Change-Id: I7b40e76ed23fa8440ffa03b262041265c109adf7
Reviewed-on: https://go-review.googlesource.com/1710
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Gccgo failed to create the type descriptor for the type used to
allocate the nil value passed to append as the second argument when
append is called with only one argument. Calling append with only one
argument is unusual but obviously should not cause a compiler crash.
Change-Id: I530821847dfd68f0302de6ca6a84dfbc79653935
Reviewed-on: https://go-review.googlesource.com/1692
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
It shouldn't semacquire() inside an acquirem(), the runtime
thinks that means deadlock. It actually isn't a deadlock, but it
looks like it because acquirem() does m.locks++.
Candidate for inclusion in 1.4.1. runtime.Stack with all=true
is pretty unuseable in GOMAXPROCS>1 environment.
fixes#9321
Change-Id: Iac6b664217d24763b9878c20e49229a1ecffc805
Reviewed-on: https://go-review.googlesource.com/1600
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
The SudoG used to sit on the stack, so it was cheap to allocated
and didn't need to be cleaned up when finished.
For the conversion to Go, we had to move sudog off the stack
for a few reasons, so we added a cache of recently used sudogs
to keep allocation cheap. But we didn't add any of the necessary
cleanup before adding a SudoG to the new cache, and so the cached
SudoGs had stale pointers inside them that have caused all sorts
of awful, hard to debug problems.
CL 155760043 made sure SudoG.elem is cleaned up.
CL 150520043 made sure SudoG.selectdone is cleaned up.
This CL makes sure SudoG.next, SudoG.prev, and SudoG.waitlink
are cleaned up. I should have done this when I did the other two
fields; instead I wasted a week tracking down a leak they caused.
A dangling SudoG.waitlink can point into a sudogcache list that
has been "forgotten" in order to let the GC collect it, but that
dangling .waitlink keeps the list from being collected.
And then the list holding the SudoG with the dangling waitlink
can find itself in the same situation, and so on. We end up
with lists of lists of unusable SudoGs that are still linked into
the object graph and never collected (given the right mix of
non-trivial selects and non-channel synchronization).
More details in golang.org/issue/9110.
Fixes#9110.
LGTM=r
R=r
CC=dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/177870043
Originally traceback was only used for printing the stack
when an unexpected signal came in. In that case, the
initial PC is taken from the signal and should be used
unaltered. For the callers, the PC is the return address,
which might be on the line after the call; we subtract 1
to get to the CALL instruction.
Traceback is now used for a variety of things, and for
almost all of those the initial PC is a return address,
whether from getcallerpc, or gp->sched.pc, or gp->syscallpc.
In those cases, we need to subtract 1 from this initial PC,
but the traceback code had a hard rule "never subtract 1
from the initial PC", left over from the signal handling days.
Change gentraceback to take a flag that specifies whether
we are tracing a trap.
Change traceback to default to "starting with a return PC",
which is the overwhelmingly common case.
Add tracebacktrap, like traceback but starting with a trap PC.
Use tracebacktrap in signal handlers.
Fixes#7690.
LGTM=iant, r
R=r, iant
CC=golang-codereviews
https://golang.org/cl/167810044
This brings cmd/gc in line with the spec on this question.
It might break existing code, but that code was not conformant
with the spec.
Credit to Rémy for finding the broken code.
Fixes#6366.
LGTM=r
R=golang-codereviews, r
CC=adonovan, golang-codereviews, gri
https://golang.org/cl/129550043
https://golang.org/cl/152700045/ made it possible for struct literals assigned to globals to use <N> as the RHS. Normally, this is to zero out variables on first use. Because globals are already zero (or their linker initialized value), we just ignored this.
Now that <N> can occur from non-initialization code, we need to emit this code. We don't use <N> for initialization of globals any more, so this shouldn't cause any excessive zeroing.
Fixes#8961.
LGTM=rsc
R=golang-codereviews, rsc
CC=bradfitz, golang-codereviews
https://golang.org/cl/154540044
During anylit run, nodes such as SLICEARR(statictmp, [:])
may be generated and are expected to be found unchanged by
gen_as_init.
In some walks (in particular walkselect), the statement
may be walked again and lowered to its usual form, leading to a
crash.
Fixes#8017.
Fixes#8024.
Fixes#8058.
LGTM=rsc
R=golang-codereviews, dvyukov, gobot, rsc
CC=golang-codereviews
https://golang.org/cl/112080043
Previously it might happen before calling dowidth and
result in a compiler crash.
Fixes#8060.
LGTM=dvyukov, rsc
R=golang-codereviews, dvyukov, gobot, rsc
CC=golang-codereviews
https://golang.org/cl/110980044
newstackcall creates a new stack segment, and we want to
be able to throw away all that code.
LGTM=khr
R=khr, iant
CC=dvyukov, golang-codereviews, r
https://golang.org/cl/139270043
Normally, an expression of the form x.f or *y can be reordered
with function calls and communications.
Select is stricter than normal: each channel expression is evaluated
in source order. If you have case <-x.f and case <-foo(), then if the
evaluation of x.f causes a panic, foo must not have been called.
(This is in contrast to an expression like x.f + foo().)
Enforce this stricter ordering.
Fixes#8336.
LGTM=dvyukov
R=golang-codereviews, dvyukov
CC=golang-codereviews, r
https://golang.org/cl/126570043
Credit to Rémy for finding and writing test case.
Fixes#8325.
LGTM=r
R=golang-codereviews, r
CC=dave, golang-codereviews, iant, remyoudompheng
https://golang.org/cl/124950043
Fixes#8074.
The issue was not reproduceable by revision
go version devel +e0ad7e329637 Thu Jun 19 22:19:56 2014 -0700 linux/arm
But include the original test case in case the issue reopens itself.
LGTM=dvyukov
R=golang-codereviews, dvyukov
CC=golang-codereviews
https://golang.org/cl/107290043
A runtime.Goexit during a panic-invoked deferred call
left the panic stack intact even though all the stack frames
are gone when the goroutine is torn down.
The next goroutine to reuse that struct will have a
bogus panic stack and can cause the traceback routines
to walk into garbage.
Most likely to happen during tests, because t.Fatal might
be called during a deferred func and uses runtime.Goexit.
This "not enough cleared in Goexit" failure mode has
happened to us multiple times now. Clear all the pointers
that don't make sense to keep, not just gp->panic.
Fixes#8158.
LGTM=iant, dvyukov
R=iant, dvyukov
CC=golang-codereviews
https://golang.org/cl/102220043
I am not sure what the rounding here was
trying to do, but it was skipping the first
pointer on native client.
The code above the rounding already checks
that xoffset is widthptr-aligned, so the rnd
was a no-op everywhere but on Native Client.
And on Native Client it was wrong.
Perhaps it was supposed to be rounding down,
not up, but zerorange handles the extra 32 bits
correctly, so the rnd does not seem to be necessary
at all.
This wouldn't be worth doing for Go 1.3 except
that it can affect code on the playground.
Fixes#8155.
LGTM=r, iant
R=golang-codereviews, r, iant
CC=dvyukov, golang-codereviews, khr
https://golang.org/cl/108740047
The 1-byte write was silently clearing a byte on the stack.
If there was another function call with more arguments
in the same stack frame, no harm done.
Otherwise, if the variable at that location was already zero,
no harm done.
Otherwise, problems.
Fixes#8139.
LGTM=dsymonds
R=golang-codereviews, dsymonds
CC=golang-codereviews, iant, r
https://golang.org/cl/100940043
We were requiring that the defer stack and the panic stack
be completely processed, thinking that if any were left over
the stack scan and the defer stack/panic stack must be out
of sync. It turns out that the panic stack may well have
leftover entries in some situations, and that's okay.
Fixes#8132.
LGTM=minux, r
R=golang-codereviews, minux, r
CC=golang-codereviews, iant, khr
https://golang.org/cl/100900044
The 'continuation pc' is where the frame will continue
execution, if anywhere. For a frame that stopped execution
due to a CALL instruction, the continuation pc is immediately
after the CALL. But for a frame that stopped execution due to
a fault, the continuation pc is the pc after the most recent CALL
to deferproc in that frame, or else 0. That is where execution
will continue, if anywhere.
The liveness information is only recorded for CALL instructions.
This change makes sure that we never look for liveness information
except for CALL instructions.
Using a valid PC fixes crashes when a garbage collection or
stack copying tries to process a stack frame that has faulted.
Record continuation pc in heapdump (format change).
Fixes#8048.
LGTM=iant, khr
R=khr, iant, dvyukov
CC=golang-codereviews, r
https://golang.org/cl/100870044
This CL forces the optimizer to preserve some memory stores
that would be redundant except that a stack scan due to garbage
collection or stack copying might look at them during a function call.
As such, it forces additional memory writes and therefore slows
down the execution of some programs, especially garbage-heavy
programs that are already limited by memory bandwidth.
The slowdown can be as much as 7% for end-to-end benchmarks.
These numbers are from running go1.test -test.benchtime=5s three times,
taking the best (lowest) ns/op for each benchmark. I am excluding
benchmarks with time/op < 10us to focus on macro effects.
All benchmarks are on amd64.
Comparing tip (a27f34c771cb) against this CL on an Intel Core i5 MacBook Pro:
benchmark old ns/op new ns/op delta
BenchmarkBinaryTree17 3876500413 3856337341 -0.52%
BenchmarkFannkuch11 2965104777 2991182127 +0.88%
BenchmarkGobDecode 8563026 8788340 +2.63%
BenchmarkGobEncode 5050608 5267394 +4.29%
BenchmarkGzip 431191816 434168065 +0.69%
BenchmarkGunzip 107873523 110563792 +2.49%
BenchmarkHTTPClientServer 85036 86131 +1.29%
BenchmarkJSONEncode 22143764 22501647 +1.62%
BenchmarkJSONDecode 79646916 85658808 +7.55%
BenchmarkMandelbrot200 4720421 4700108 -0.43%
BenchmarkGoParse 4651575 4712247 +1.30%
BenchmarkRegexpMatchMedium_1K 71986 73490 +2.09%
BenchmarkRegexpMatchHard_1K 111018 117495 +5.83%
BenchmarkRevcomp 648798723 659352759 +1.63%
BenchmarkTemplate 112673009 112819078 +0.13%
Comparing tip (a27f34c771cb) against this CL on an Intel Xeon E5520:
BenchmarkBinaryTree17 5461110720 5393104469 -1.25%
BenchmarkFannkuch11 4314677151 4327177615 +0.29%
BenchmarkGobDecode 11065853 11235272 +1.53%
BenchmarkGobEncode 6500065 6959837 +7.07%
BenchmarkGzip 647478596 671769097 +3.75%
BenchmarkGunzip 139348579 141096376 +1.25%
BenchmarkHTTPClientServer 69376 73610 +6.10%
BenchmarkJSONEncode 30172320 31796106 +5.38%
BenchmarkJSONDecode 113704905 114239137 +0.47%
BenchmarkMandelbrot200 6032730 6003077 -0.49%
BenchmarkGoParse 6775251 6405995 -5.45%
BenchmarkRegexpMatchMedium_1K 111832 113895 +1.84%
BenchmarkRegexpMatchHard_1K 161112 168420 +4.54%
BenchmarkRevcomp 876363406 892319935 +1.82%
BenchmarkTemplate 146273096 148998339 +1.86%
Just to get a sense of where we are compared to the previous release,
here are the same benchmarks comparing Go 1.2 to this CL.
Comparing Go 1.2 against this CL on an Intel Core i5 MacBook Pro:
BenchmarkBinaryTree17 4370077662 3856337341 -11.76%
BenchmarkFannkuch11 3347052657 2991182127 -10.63%
BenchmarkGobDecode 8791384 8788340 -0.03%
BenchmarkGobEncode 4968759 5267394 +6.01%
BenchmarkGzip 437815669 434168065 -0.83%
BenchmarkGunzip 94604099 110563792 +16.87%
BenchmarkHTTPClientServer 87798 86131 -1.90%
BenchmarkJSONEncode 22818243 22501647 -1.39%
BenchmarkJSONDecode 97182444 85658808 -11.86%
BenchmarkMandelbrot200 4733516 4700108 -0.71%
BenchmarkGoParse 5054384 4712247 -6.77%
BenchmarkRegexpMatchMedium_1K 67612 73490 +8.69%
BenchmarkRegexpMatchHard_1K 107321 117495 +9.48%
BenchmarkRevcomp 733270055 659352759 -10.08%
BenchmarkTemplate 109304977 112819078 +3.21%
Comparing Go 1.2 against this CL on an Intel Xeon E5520:
BenchmarkBinaryTree17 5986953594 5393104469 -9.92%
BenchmarkFannkuch11 4861139174 4327177615 -10.98%
BenchmarkGobDecode 11830997 11235272 -5.04%
BenchmarkGobEncode 6608722 6959837 +5.31%
BenchmarkGzip 661875826 671769097 +1.49%
BenchmarkGunzip 138630019 141096376 +1.78%
BenchmarkHTTPClientServer 71534 73610 +2.90%
BenchmarkJSONEncode 30393609 31796106 +4.61%
BenchmarkJSONDecode 139645860 114239137 -18.19%
BenchmarkMandelbrot200 5988660 6003077 +0.24%
BenchmarkGoParse 6974092 6405995 -8.15%
BenchmarkRegexpMatchMedium_1K 111331 113895 +2.30%
BenchmarkRegexpMatchHard_1K 165961 168420 +1.48%
BenchmarkRevcomp 995049292 892319935 -10.32%
BenchmarkTemplate 145623363 148998339 +2.32%
Fixes#8036.
LGTM=khr
R=golang-codereviews, josharian, khr
CC=golang-codereviews, iant, r
https://golang.org/cl/99660044
CL 51010045 fixed the first one of these:
cmd/gc: return canonical Node* from temp
For historical reasons, temp was returning a copy
of the created Node*, not the original Node*.
This meant that if analysis recorded information in the
returned node (for example, n->addrtaken = 1), the
analysis would not show up on the original Node*, the
one kept in fn->dcl and consulted during liveness
bitmap creation.
Correct this, and watch for it when setting addrtaken.
Fixes#7083.
R=khr, dave, minux.ma
CC=golang-codereviews
https://golang.org/cl/51010045
CL 53200043 fixed the second:
cmd/gc: fix race build
Missed this case in CL 51010045.
TBR=khr
CC=golang-codereviews
https://golang.org/cl/53200043
This CL fixes the third. There are only three nod(OXXX, ...)
calls in sinit.c, so maybe we're done. Embarassing that it
took three CLs to find all three.
Fixes#8028.
LGTM=khr
R=golang-codereviews, khr
CC=golang-codereviews, iant
https://golang.org/cl/100800046
In the first very rough draft of the reordering code
that was introduced in the Go 1.3 cycle, the pre-allocated
temporary for a ... argument was held in n->right.
It moved to n->alloc but the code avoiding n->right
was left behind in order.c. In copy(x, <-c), the receive
is in n->right and must be processed. Delete the special
case code, removing the bug.
Fixes#8039.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/100820044
The code cannot have worked before, because it was
trying to use the old value in a range check for the new
type, which might have a different representation
(hence the 'internal compiler error').
Fixes#8073.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/98630045
I don't know when the bug was fixed, but empirically it was.
Make sure it stays fixed by adding a test.
Fixes#7884.
LGTM=adg
R=golang-codereviews, adg
CC=golang-codereviews
https://golang.org/cl/93500043
The temporary-introducing pass was not recursing
into the argumnt of a receive operation.
Fixes#8011.
LGTM=r
R=golang-codereviews, r
CC=golang-codereviews, iant, khr
https://golang.org/cl/91540043
The introduction of temporaries in order.c was not
quite right for two corner cases:
1) The rewrite that pushed new variables on the lhs of
a receive into the body of the case was dropping the
declaration of the variables. If the variables escape,
the declaration is what allocates them.
Caught by escape analysis sanity check.
In fact the declarations should move into the body
always, so that we only allocate if the corresponding
case is selected. Do that. (This is an optimization that
was already present in Go 1.2. The new order code just
made it stop working.)
Fixes#7997.
2) The optimization to turn a single-recv select into
an ordinary receive assumed it could take the address
of the destination; not so if the destination is _.
Fixes#7998.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/100480043
The GC program describing a data structure sometimes trusts the
pointer base type and other times does not (if not, the garbage collector
must fall back on per-allocation type information stored in the heap).
Make the scanning of a pointer in an interface do the same.
This fixes a crash in a particular use of reflect.SliceHeader.
Fixes#8004.
LGTM=khr
R=golang-codereviews, khr
CC=0xe2.0x9a.0x9b, golang-codereviews, iant, r
https://golang.org/cl/100470045
Globals, function arguments, and results are special cases in
registerization.
Globals must be flushed aggressively, because nearly any
operation can cause a panic, and the recovery code must see
the latest values. Globals also must be loaded aggressively,
because nearly any store through a pointer might be updating a
global: the compiler cannot see all the "address of"
operations on globals, especially exported globals. To
accomplish this, mark all globals as having their address
taken, which effectively disables registerization.
If a function contains a defer statement, the function results
must be flushed aggressively, because nearly any operation can
cause a panic, and the deferred code may call recover, causing
the original function to return the current values of its
function results. To accomplish this, mark all function
results as having their address taken if the function contains
any defer statements. This causes not just aggressive flushing
but also aggressive loading. The aggressive loading is
overkill but the best we can do in the current code.
Function arguments must be considered live at all safe points
in a function, because garbage collection always preserves
them: they must be up-to-date in order to be preserved
correctly. Accomplish this by marking them live at all call
sites. An earlier attempt at this marked function arguments as
having their address taken, which disabled registerization
completely, making programs slower. This CL's solution allows
registerization while preserving safety. The benchmark speedup
is caused by being able to registerize again (the earlier CL
lost the same amount).
benchmark old ns/op new ns/op delta
BenchmarkEqualPort32 61.4 56.0 -8.79%
benchmark old MB/s new MB/s speedup
BenchmarkEqualPort32 521.56 570.97 1.09x
Fixes#1304. (again)
Fixes#7944. (again)
Fixes#7984.
Fixes#7995.
LGTM=khr
R=golang-codereviews, khr
CC=golang-codereviews, iant, r
https://golang.org/cl/97500044
The inputs to a function are marked live at all times in the
liveness bitmaps, so that the garbage collector will not free
the things they point at and reuse the pointers, so that the
pointers shown in stack traces are guaranteed not to have
been recycled.
Unfortunately, no one told the register optimizer that the
inputs need to be preserved at all call sites. If a function
is done with a particular input value, the optimizer will stop
preserving it across calls. For single-word values this just
means that the value recorded might be stale. For multi-word
values like slices, the value recorded could be only partially stale:
it can happen that, say, the cap was updated but not the len,
or that the len was updated but not the base pointer.
Either of these possibilities (and others) would make the
garbage collector misinterpret memory, leading to memory
corruption.
This came up in a real program, in which the garbage collector's
'slice len ≤ slice cap' check caught the inconsistency.
Fixes#7944.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews, khr
https://golang.org/cl/100370045
This is joint work with Daniel Morsing.
In order for the register allocator to alias two variables, they must have the same width, stack offset, and etype. Code generation was altering a variable's etype in a few places. This prevented the variable from being moved to a register, which in turn prevented peephole optimization. This failure to alias was very common, with almost 23,000 instances just running make.bash.
This phenomenon was not visible in the register allocation debug output because the variables that failed to alias had the same name. The debugging-only change to bits.c fixes this by printing the variable number with its name.
This CL fixes the source of all etype mismatches for 6g, all but one case for 8g, and depressingly few cases for 5g. (I believe that extending CL 6819083 to 5g is a prerequisite.) Fixing the remaining cases in 8g and 5g is work for the future.
The etype mismatch fixes are:
* [gc] Slicing changed the type of the base pointer into a uintptr in order to perform arithmetic on it. Instead, support addition directly on pointers.
* [*g] OSPTR was giving type uintptr to slice base pointers; undo that. This arose, for example, while compiling copy(dst, src).
* [8g] 64 bit float conversion was assigning int64 type during codegen, overwriting the existing uint64 type.
Note that some etype mismatches are appropriate, such as a struct with a single field or an array with a single element.
With these fixes, the number of registerizations that occur while running make.bash for 6g increases ~10%. Hello world binary size shrinks ~1.5%. Running all benchmarks in the standard library show performance improvements ranging from nominal to substantive (>10%); a full comparison using 6g on my laptop is available at https://gist.github.com/josharian/8f9b5beb46667c272064. The microbenchmarks must be taken with a grain of salt; see issue 7920. The few benchmarks that show real regressions are likely due to issue 7920. I manually examined the generated code for the top few regressions and none had any assembly output changes. The few benchmarks that show extraordinary improvements are likely also due to issue 7920.
Performance results from 8g appear similar to 6g.
5g shows no performance improvements. This is not surprising, given the discussion above.
Update #7316
LGTM=rsc
R=rsc, daniel.morsing, bradfitz
CC=dave, golang-codereviews
https://golang.org/cl/91850043
Before we used line 1 of the first source file.
This should be clearer.
Fixes#4388.
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/92250044
The register allocator decides which variables should be placed into registers by charging for each load/store and crediting for each use, and then selecting an allocation with minimal cost. NOPs will be eliminated, however, so using a variable in a NOP should not generate credit.
Issue 7867 arises from attempted registerization of multi-word variables because they are used in NOPs. By not crediting for that use, they will no longer be considered for registerization.
This fix could theoretically lead to better register allocation, but NOPs are rare relative to other instructions.
Fixes#7867.
LGTM=rsc
R=rsc
CC=golang-codereviews
https://golang.org/cl/94810044
Variables declared with 'var' have no sym->def.
Fixes#7794.
LGTM=rsc
R=golang-codereviews, bradfitz, rsc
CC=golang-codereviews
https://golang.org/cl/88360043
1. On entry to a function, only zero the ambiguously live stack variables.
Before, we were zeroing all stack variables containing pointers.
The zeroing is pretty inefficient right now (issue 7624), but there are also
too many stack variables detected as ambiguously live (issue 7345),
and that must be addressed before deciding how to improve the zeroing code.
(Changes in 5g/ggen.c, 6g/ggen.c, 8g/ggen.c, gc/pgen.c)
Fixes#7647.
2. Make the regopt word-based liveness analysis preserve the
whole-variable liveness property expected by the garbage collection
bitmap liveness analysis. That is, if the regopt liveness decides that
one word in a struct needs to be preserved, make sure it preserves
the entire struct. This is particularly important for multiword values
such as strings, slices, and interfaces, in which all the words need
to be present in order to understand the meaning.
(Changes in 5g/reg.c, 6g/reg.c, 8g/reg.c.)
Fixes#7591.
3. Make the regopt word-based liveness analysis treat a variable
as having its address taken - which makes it preserved across
all future calls - whenever n->addrtaken is set, for consistency
with the gc bitmap liveness analysis, even if there is no machine
instruction actually taking the address. In this case n->addrtaken
is incorrect (a nicer way to put it is overconservative), and ideally
there would be no such cases, but they can happen and the two
analyses need to agree.
(Changes in 5g/reg.c, 6g/reg.c, 8g/reg.c; test in bug484.go.)
Fixes crashes found by turning off "zero everything" in step 1.
4. Remove spurious VARDEF annotations. As the comment in
gc/pgen.c explains, the VARDEF must immediately precede
the initialization. It cannot be too early, and it cannot be too late.
In particular, if a function call sits between the VARDEF and the
actual machine instructions doing the initialization, the variable
will be treated as live during that function call even though it is
uninitialized, leading to problems.
(Changes in gc/gen.c; test in live.go.)
Fixes crashes found by turning off "zero everything" in step 1.
5. Do not treat loading the address of a wide value as a signal
that the value must be initialized. Instead depend on the existence
of a VARDEF or the first actual read/write of a word in the value.
If the load is in order to pass the address to a function that does
the actual initialization, treating the load as an implicit VARDEF
causes the same problems as described in step 4.
The alternative is to arrange to zero every such value before
passing it to the real initialization function, but this is a much
easier and more efficient change.
(Changes in gc/plive.c.)
Fixes crashes found by turning off "zero everything" in step 1.
6. Treat wide input parameters with their address taken as
initialized on entry to the function. Otherwise they look
"ambiguously live" and we will try to emit code to zero them.
(Changes in gc/plive.c.)
Fixes crashes found by turning off "zero everything" in step 1.
7. An array of length 0 has no pointers, even if the element type does.
Without this change, the zeroing code complains when asked to
clear a 0-length array.
(Changes in gc/reflect.c.)
LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/80160044
Revision 3ae4607a43ff introduced CONVNOP layers
to fix type checking issues arising from comparisons.
The added complexity made 8g run out of registers
when compiling an equality function in go.net/ipv6.
A similar issue occurred in test/sizeof.go on
amd64p32 with 6g.
Fixes#7405.
LGTM=khr
R=rsc, dave, iant, khr
CC=golang-codereviews
https://golang.org/cl/78100044
A too large float constant is an error.
A too small float constant is rounded to zero.
Fixes#7419
Update #6902
LGTM=iant
R=golang-codereviews, iant
CC=golang-codereviews
https://golang.org/cl/76730046