1
0
mirror of https://github.com/golang/go synced 2024-10-02 12:18:33 -06:00
Commit Graph

143 Commits

Author SHA1 Message Date
Austin Clements
1bc6be6423 runtime: mark several types go:notinheap
This covers basically all sysAlloc'd, persistentalloc'd, and
fixalloc'd types.

Change-Id: I0487c887c2a0ade5e33d4c4c12d837e97468e66b
Reviewed-on: https://go-review.googlesource.com/30941
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-10-15 17:58:20 +00:00
Austin Clements
aaf4099a5c runtime: update malloc.go documentation
The big documentation comment at the top of malloc.go has gotten
woefully out of date. Update it.

Change-Id: Ibdb1bdcfdd707a6dc9db79d0633a36a28882301b
Reviewed-on: https://go-review.googlesource.com/29731
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-09-26 22:00:53 +00:00
Austin Clements
6dda7b2f5f runtime: don't hard-code physical page size
Now that the runtime fetches the true physical page size from the OS,
make the physical page size used by heap growth a variable instead of
a constant. This isn't used in any performance-critical paths, so it
shouldn't be an issue.

sys.PhysPageSize is also renamed to sys.DefaultPhysPageSize to make it
clear that it's not necessarily the true page size. There are no uses
of this constant any more, but we'll keep it around for now.

Updates #12480 and #10180.

Change-Id: I6c23b9df860db309c38c8287a703c53817754f03
Reviewed-on: https://go-review.googlesource.com/25022
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-09-06 21:05:53 +00:00
Austin Clements
276a52de55 runtime: fetch physical page size from the OS
Currently the physical page size assumed by the runtime is hard-coded.
On Linux the runtime at least fetches the OS page size during init and
sanity checks against the hard-coded value, but they may still differ.
On other OSes we wouldn't even notice.

Add support on all OSes to fetch the actual OS physical page size
during runtime init and lift the sanity check of PhysPageSize from the
Linux init code to general malloc init. Currently this is the only use
of the retrieved page size, but we'll add more shortly.

Updates #12480 and #10180.

Change-Id: I065f2834bc97c71d3208edc17fd990ec9058b6da
Reviewed-on: https://go-review.googlesource.com/25050
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-09-06 21:05:50 +00:00
Josh Bleecher Snyder
2b74de3ed9 runtime: rename fastrand1 to fastrand
Change-Id: I37706ff0a3486827c5b072c95ad890ea87ede847
Reviewed-on: https://go-review.googlesource.com/28210
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-08-30 23:59:21 +00:00
Cherry Zhang
b2e0e9688a cmd/compile: remove Zero and NilCheck for newobject
Recognize runtime.newobject and don't Zero or NilCheck it.

Fixes #15914 (?)
Updates #15390.

TBD: add test

Change-Id: Ia3bfa5c2ddbe2c27c92d9f68534a713b5ce95934
Reviewed-on: https://go-review.googlesource.com/27930
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
2016-08-30 23:10:43 +00:00
Dmitry Vyukov
14e5951166 runtime: increase malloc size classes
When we calculate class sizes, in some cases we discard considerable
amounts of memory without an apparent reason. For example, we choose
size 8448 with 6 objects in 7 pages. But we can well use object
size 9472, which is also 6 objects in 7 pages but +1024 bytes (+12.12%).

Increase class sizes to the max value that leads to the same
page count/number of objects. Full list of affected size classes:

class 36: pages: 2 size: 1664->1792 +128 (7.69%)
class 39: pages: 1 size: 2560->2688 +128 (5.0%)
class 40: pages: 3 size: 2816->3072 +256 (9.9%)
class 41: pages: 2 size: 3072->3200 +128 (4.16%)
class 42: pages: 3 size: 3328->3456 +128 (3.84%)
class 44: pages: 3 size: 4608->4864 +256 (5.55%)
class 47: pages: 4 size: 6400->6528 +128 (2.0%)
class 48: pages: 5 size: 6656->6784 +128 (1.92%)
class 51: pages: 7 size: 8448->9472 +1024 (12.12%)
class 52: pages: 6 size: 8704->9728 +1024 (11.76%)
class 53: pages: 5 size: 9472->10240 +768 (8.10%)
class 54: pages: 4 size: 10496->10880 +384 (3.65%)
class 57: pages: 7 size: 14080->14336 +256 (1.81%)
class 59: pages: 9 size: 16640->18432 +1792 (10.76%)
class 60: pages: 7 size: 17664->19072 +1408 (7.97%)
class 62: pages: 8 size: 21248->21760 +512 (2.40%)
class 64: pages: 10 size: 24832->27264 +2432 (9.79%)
class 65: pages: 7 size: 28416->28672 +256 (0.90%)

name                      old time/op    new time/op    delta
BinaryTree17-12              2.59s ± 5%     2.52s ± 4%    ~     (p=0.132 n=6+6)
Fannkuch11-12                2.13s ± 3%     2.17s ± 3%    ~     (p=0.180 n=6+6)
FmtFprintfEmpty-12          47.0ns ± 3%    46.6ns ± 1%    ~     (p=0.355 n=6+5)
FmtFprintfString-12          131ns ± 0%     131ns ± 1%    ~     (p=0.476 n=4+6)
FmtFprintfInt-12             121ns ± 6%     122ns ± 2%    ~     (p=0.511 n=6+6)
FmtFprintfIntInt-12          182ns ± 2%     186ns ± 1%  +2.20%  (p=0.015 n=6+6)
FmtFprintfPrefixedInt-12     184ns ± 5%     181ns ± 2%    ~     (p=0.645 n=6+6)
FmtFprintfFloat-12           272ns ± 7%     265ns ± 1%    ~     (p=1.000 n=6+5)
FmtManyArgs-12               783ns ± 2%     802ns ± 2%  +2.38%  (p=0.017 n=6+6)
GobDecode-12                7.04ms ± 4%    7.00ms ± 2%    ~     (p=1.000 n=6+6)
GobEncode-12                6.36ms ± 6%    6.17ms ± 6%    ~     (p=0.240 n=6+6)
Gzip-12                      242ms ±14%     233ms ± 7%    ~     (p=0.310 n=6+6)
Gunzip-12                   36.6ms ±22%    36.0ms ± 9%    ~     (p=0.841 n=5+5)
HTTPClientServer-12         93.1µs ±29%    88.0µs ±32%    ~     (p=0.240 n=6+6)
JSONEncode-12               27.1ms ±39%    26.2ms ±35%    ~     (p=0.589 n=6+6)
JSONDecode-12               71.7ms ±36%    71.5ms ±36%    ~     (p=0.937 n=6+6)
Mandelbrot200-12            4.78ms ±10%    4.70ms ±16%    ~     (p=0.394 n=6+6)
GoParse-12                  4.86ms ±34%    4.95ms ±36%    ~     (p=1.000 n=6+6)
RegexpMatchEasy0_32-12       110ns ±37%     110ns ±36%    ~     (p=0.660 n=6+6)
RegexpMatchEasy0_1K-12       240ns ±38%     234ns ±47%    ~     (p=0.554 n=6+6)
RegexpMatchEasy1_32-12      77.2ns ± 2%    77.2ns ±10%    ~     (p=0.699 n=6+6)
RegexpMatchEasy1_1K-12       337ns ± 5%     331ns ± 4%    ~     (p=0.552 n=6+6)
RegexpMatchMedium_32-12      125ns ±13%     132ns ±26%    ~     (p=0.561 n=6+6)
RegexpMatchMedium_1K-12     35.9µs ± 3%    36.1µs ± 5%    ~     (p=0.818 n=6+6)
RegexpMatchHard_32-12       1.81µs ± 4%    1.82µs ± 5%    ~     (p=0.452 n=5+5)
RegexpMatchHard_1K-12       52.4µs ± 2%    54.4µs ± 3%  +3.84%  (p=0.002 n=6+6)
Revcomp-12                   401ms ± 2%     390ms ± 1%  -2.82%  (p=0.002 n=6+6)
Template-12                 54.5ms ± 3%    54.6ms ± 1%    ~     (p=0.589 n=6+6)
TimeParse-12                 294ns ± 1%     298ns ± 2%    ~     (p=0.160 n=6+6)
TimeFormat-12                323ns ± 4%     318ns ± 5%    ~     (p=0.297 n=6+6)

name                      old speed      new speed      delta
GobDecode-12               109MB/s ± 4%   110MB/s ± 2%    ~     (p=1.000 n=6+6)
GobEncode-12               121MB/s ± 6%   125MB/s ± 6%    ~     (p=0.240 n=6+6)
Gzip-12                   80.4MB/s ±12%  83.3MB/s ± 7%    ~     (p=0.310 n=6+6)
Gunzip-12                  495MB/s ±41%   541MB/s ± 9%    ~     (p=0.931 n=6+5)
JSONEncode-12             80.7MB/s ±39%  82.8MB/s ±34%    ~     (p=0.589 n=6+6)
JSONDecode-12             30.4MB/s ±40%  31.0MB/s ±37%    ~     (p=0.937 n=6+6)
GoParse-12                13.2MB/s ±33%  13.2MB/s ±35%    ~     (p=1.000 n=6+6)
RegexpMatchEasy0_32-12     321MB/s ±34%   326MB/s ±34%    ~     (p=0.699 n=6+6)
RegexpMatchEasy0_1K-12    4.49GB/s ±31%  4.74GB/s ±37%    ~     (p=0.589 n=6+6)
RegexpMatchEasy1_32-12     414MB/s ± 2%   415MB/s ± 9%    ~     (p=0.699 n=6+6)
RegexpMatchEasy1_1K-12    3.03GB/s ± 5%  3.09GB/s ± 4%    ~     (p=0.699 n=6+6)
RegexpMatchMedium_32-12   7.99MB/s ±12%  7.68MB/s ±22%    ~     (p=0.589 n=6+6)
RegexpMatchMedium_1K-12   28.5MB/s ± 3%  28.4MB/s ± 5%    ~     (p=0.818 n=6+6)
RegexpMatchHard_32-12     17.7MB/s ± 4%  17.0MB/s ±15%    ~     (p=0.351 n=5+6)
RegexpMatchHard_1K-12     19.6MB/s ± 2%  18.8MB/s ± 3%  -3.67%  (p=0.002 n=6+6)
Revcomp-12                 634MB/s ± 2%   653MB/s ± 1%  +2.89%  (p=0.002 n=6+6)
Template-12               35.6MB/s ± 3%  35.5MB/s ± 1%    ~     (p=0.615 n=6+6)

Change-Id: I465a47f74227f316e3abea231444f48c7a30ef85
Reviewed-on: https://go-review.googlesource.com/24493
Run-TryBot: Dmitry Vyukov <dvyukov@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2016-08-19 21:24:28 +00:00
Austin Clements
d8b08c3aa4 runtime: perform publication barrier even for noscan objects
Currently we only execute a publication barrier for scan objects (and
skip it for noscan objects). This used to be okay because GC would
never consult the object itself (so it wouldn't observe uninitialized
memory even if it found a pointer to a noscan object), and the heap
bitmap was pre-initialized to noscan.

However, now we explicitly initialize the heap bitmap for noscan
objects when we allocate them. While the GC will still never consult
the contents of a noscan object, it does need to see the initialized
heap bitmap. Hence, we need to execute a publication barrier to make
the bitmap visible before user code can expose a pointer to the newly
allocated object even for noscan objects.

Change-Id: Ie4133c638db0d9055b4f7a8061a634d970627153
Reviewed-on: https://go-review.googlesource.com/23043
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-05-14 13:49:51 +00:00
Elias Naur
e6ec82067a runtime: use entire address space on 32 bit
In issue #13992, Russ mentioned that the heap bitmap footprint was
halved but that the bitmap size calculation hadn't been updated. This
presents the opportunity to either halve the bitmap size or double
the addressable virtual space. This CL doubles the addressable virtual
space. On 32 bit this can be tweaked further to allow the bitmap to
cover the entire 4GB virtual address space, removing a failure mode
if the kernel hands out memory with a too low address.

First, fix the calculation and double _MaxArena32 to cover 4GB virtual
memory space with the same bitmap size (256 MB).

Then, allow the fallback mode for the initial memory reservation
on 32 bit (or 64 bit with too little available virtual memory) to not
include space for the arena. mheap.sysAlloc will automatically reserve
additional space when the existing arena is full.

Finally, set arena_start to 0 in 32 bit mode, so that any address is
acceptable for subsequent (additional) reservations.

Before, the bitmap was always located just before arena_start, so
fix the two places relying on that assumption: Point the otherwise unused
mheap.bitmap to one byte after the end of the bitmap, and use it for
bitmap addressing instead of arena_start.

With arena_start set to 0 on 32 bit, the cgoInRange check is no longer a
sufficient check for Go pointers. Introduce and call inHeapOrStack to
check whether a pointer is to the Go heap or stack.

While we're here, remove sysReserveHigh which seems to be unused.

Fixes #13992

Change-Id: I592b513148a50b9d3967b5c5d94b86b3ec39acc2
Reviewed-on: https://go-review.googlesource.com/20471
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-05-07 03:04:39 +00:00
Austin Clements
a20fd1f6ba runtime: reclaim scan/dead bit in first word
With the switch to separate mark bitmaps, the scan/dead bit for the
first word of each object is now unused. Reclaim this bit and use it
as a scan/dead bit, just like words three and on. The second word is
still used for checkmark.

This dramatically simplifies heapBitsSetTypeNoScan and hasPointers,
since they no longer need different cases for 1, 2, and 3+ word
objects. They can instead just manipulate the heap bitmap for the
first word and be done with it.

In order to enable this, we change heapBitsSetType and runGCProg to
always set the scan/dead bit to scan for the first word on every code
path. Since these functions only apply to types that have pointers,
there's no need to do this conditionally: it's *always* necessary to
set the scan bit in the first word.

We also change every place that scans an object and checks if there
are more pointers. Rather than only checking morePointers if the word
is >= 2, we now check morePointers if word != 1 (since that's the
checkmark word).

Looking forward, we should probably reclaim the checkmark bit, too,
but that's going to be quite a bit more work.

Tested by setting doubleCheck in heapBitsSetType and running all.bash
on both linux/amd64 and linux/386, and by running GOGC=10 all.bash.

This particularly improves the FmtFprintf* go1 benchmarks, since they
do a large amount of noscan allocation.

name                      old time/op    new time/op    delta
BinaryTree17-12              2.34s ± 1%     2.38s ± 1%  +1.70%  (p=0.000 n=17+19)
Fannkuch11-12                2.09s ± 0%     2.09s ± 1%    ~     (p=0.276 n=17+16)
FmtFprintfEmpty-12          44.9ns ± 2%    44.8ns ± 2%    ~     (p=0.340 n=19+18)
FmtFprintfString-12          127ns ± 0%     125ns ± 0%  -1.57%  (p=0.000 n=16+15)
FmtFprintfInt-12             128ns ± 0%     122ns ± 1%  -4.45%  (p=0.000 n=15+20)
FmtFprintfIntInt-12          207ns ± 1%     193ns ± 0%  -6.55%  (p=0.000 n=19+14)
FmtFprintfPrefixedInt-12     197ns ± 1%     191ns ± 0%  -2.93%  (p=0.000 n=17+18)
FmtFprintfFloat-12           263ns ± 0%     248ns ± 1%  -5.88%  (p=0.000 n=15+19)
FmtManyArgs-12               794ns ± 0%     779ns ± 1%  -1.90%  (p=0.000 n=18+18)
GobDecode-12                7.14ms ± 2%    7.11ms ± 1%    ~     (p=0.072 n=20+20)
GobEncode-12                5.85ms ± 1%    5.82ms ± 1%  -0.49%  (p=0.000 n=20+20)
Gzip-12                      218ms ± 1%     215ms ± 1%  -1.22%  (p=0.000 n=19+19)
Gunzip-12                   36.8ms ± 0%    36.7ms ± 0%  -0.18%  (p=0.006 n=18+20)
HTTPClientServer-12         77.1µs ± 4%    77.1µs ± 3%    ~     (p=0.945 n=19+20)
JSONEncode-12               15.6ms ± 1%    15.9ms ± 1%  +1.68%  (p=0.000 n=18+20)
JSONDecode-12               55.2ms ± 1%    53.6ms ± 1%  -2.93%  (p=0.000 n=17+19)
Mandelbrot200-12            4.05ms ± 1%    4.05ms ± 0%    ~     (p=0.306 n=17+17)
GoParse-12                  3.14ms ± 1%    3.10ms ± 1%  -1.31%  (p=0.000 n=19+18)
RegexpMatchEasy0_32-12      69.3ns ± 1%    70.0ns ± 0%  +0.89%  (p=0.000 n=19+17)
RegexpMatchEasy0_1K-12       237ns ± 1%     236ns ± 0%  -0.62%  (p=0.000 n=19+16)
RegexpMatchEasy1_32-12      69.5ns ± 1%    70.3ns ± 1%  +1.14%  (p=0.000 n=18+17)
RegexpMatchEasy1_1K-12       377ns ± 1%     366ns ± 1%  -3.03%  (p=0.000 n=15+19)
RegexpMatchMedium_32-12      107ns ± 1%     107ns ± 2%    ~     (p=0.318 n=20+19)
RegexpMatchMedium_1K-12     33.8µs ± 3%    33.5µs ± 1%  -1.04%  (p=0.001 n=20+19)
RegexpMatchHard_32-12       1.68µs ± 1%    1.73µs ± 0%  +2.50%  (p=0.000 n=20+18)
RegexpMatchHard_1K-12       50.8µs ± 1%    52.0µs ± 1%  +2.50%  (p=0.000 n=19+18)
Revcomp-12                   381ms ± 1%     385ms ± 1%  +1.00%  (p=0.000 n=17+18)
Template-12                 64.9ms ± 3%    62.6ms ± 1%  -3.55%  (p=0.000 n=19+18)
TimeParse-12                 324ns ± 0%     328ns ± 1%  +1.25%  (p=0.000 n=18+18)
TimeFormat-12                345ns ± 0%     334ns ± 0%  -3.31%  (p=0.000 n=15+17)
[Geo mean]                  52.1µs         51.5µs       -1.00%

Change-Id: I13e74da3193a7f80794c654f944d1f0d60817049
Reviewed-on: https://go-review.googlesource.com/22632
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-30 16:49:54 +00:00
Rick Hudson
e9eaa181fc [dev.garbage] runtime: simplify nextFreeFast so it is inlined
nextFreeFast is currently not inlined by the compiler due
to its size and complexity. This CL simplifies
nextFreeFast by letting the slow path handle (nextFree)
handle a corner cases.

Change-Id: Ia9c5d1a7912bcb4bec072f5fd240f0e0bafb20e4
Reviewed-on: https://go-review.googlesource.com/22598
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Austin Clements <austin@google.com>
2016-04-29 16:47:11 +00:00
Austin Clements
d97625ae9e [dev.garbage] runtime: fix nfree accounting
Commit 8dda1c4 changed the meaning of "nfree" in sweep from the number
of newly freed objects to the total number of free objects in the
span, but didn't update where sweep added nfree to c.local_nsmallfree.
Hence, we're over-accounting the number of frees. This is causing
TestArrayHash to fail with "too many allocs NNN - hash not balanced".

Fix this by computing the number of newly freed objects and adding
that to c.local_nsmallfree, so it behaves like it used to. Computing
this requires a small tweak to mallocgc: apparently we've never set
s.allocCount when allocating a large object; fix this by setting it to
1 so sweep doesn't get confused.

Change-Id: I31902ffd310110da4ffd807c5c06f1117b872dc8
Reviewed-on: https://go-review.googlesource.com/22595
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
2016-04-29 15:25:26 +00:00
Austin Clements
6d11490539 [dev.garbage] runtime: fix allocfreetrace
We broke tracing of freed objects in GODEBUG=allocfreetrace=1 mode
when we removed the sweep over the mark bitmap. Fix it by
re-introducing the sweep over the bitmap specifically if we're in
allocfreetrace mode. This doesn't have to be even remotely efficient,
since the overhead of allocfreetrace is huge anyway, so we can keep
the code for this down to just a few lines.

Change-Id: I9e176b3b04c73608a0ea3068d5d0cd30760ebd40
Reviewed-on: https://go-review.googlesource.com/22592
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-04-29 15:08:21 +00:00
Austin Clements
38f674687a [dev.garbage] runtime: reintroduce no-zeroing optimization
Currently we always zero objects when we allocate them. We used to
have an optimization that would not zero objects that had not been
allocated since the whole span was last zeroed (either by getting it
from the system or by getting it from the heap, which does a bulk
zero), but this depended on the sweeper clobbering the first two words
of each object. Hence, we lost this optimization when the bitmap
sweeper went away.

Re-introduce this optimization using a different mechanism. Each span
already keeps a flag indicating that it just came from the OS or was
just bulk zeroed by the mheap. We can simply use this flag to know
when we don't need to zero an object. This is slightly less efficient
than the old optimization: if a span gets allocated and partially
used, then GC happens and the span gets returned to the mcentral, then
the span gets re-acquired, the old optimization knew that it only had
to re-zero the objects that had been reclaimed, whereas this
optimization will re-zero everything. However, in this case, you're
already paying for the garbage collection, and you've only wasted one
zeroing of the span, so in practice there seems to be little
difference. (If we did want to revive the full optimization, each span
could keep track of a frontier beyond which all free slots are zeroed.
I prototyped this and it didn't obvious do any better than the much
simpler approach in this commit.)

This significantly improves BinaryTree17, which is allocation-heavy
(and runs first, so most pages are already zeroed), and slightly
improves everything else.

name              old time/op  new time/op  delta
XBenchGarbage-12  2.15ms ± 1%  2.14ms ± 1%  -0.80%  (p=0.000 n=17+17)

name                      old time/op    new time/op    delta
BinaryTree17-12              2.71s ± 1%     2.56s ± 1%  -5.73%        (p=0.000 n=18+19)
DivconstI64-12              1.70ns ± 1%    1.70ns ± 1%    ~           (p=0.562 n=18+18)
DivconstU64-12              1.74ns ± 2%    1.74ns ± 1%    ~           (p=0.394 n=20+20)
DivconstI32-12              1.74ns ± 0%    1.74ns ± 0%    ~     (all samples are equal)
DivconstU32-12              1.66ns ± 1%    1.66ns ± 0%    ~           (p=0.516 n=15+16)
DivconstI16-12              1.84ns ± 0%    1.84ns ± 0%    ~     (all samples are equal)
DivconstU16-12              1.82ns ± 0%    1.82ns ± 0%    ~     (all samples are equal)
DivconstI8-12               1.79ns ± 0%    1.79ns ± 0%    ~     (all samples are equal)
DivconstU8-12               1.60ns ± 0%    1.60ns ± 1%    ~           (p=0.603 n=17+19)
Fannkuch11-12                2.11s ± 1%     2.11s ± 0%    ~           (p=0.333 n=16+19)
FmtFprintfEmpty-12          45.1ns ± 4%    45.4ns ± 5%    ~           (p=0.111 n=20+20)
FmtFprintfString-12          134ns ± 0%     129ns ± 0%  -3.45%        (p=0.000 n=18+16)
FmtFprintfInt-12             131ns ± 1%     129ns ± 1%  -1.54%        (p=0.000 n=16+18)
FmtFprintfIntInt-12          205ns ± 2%     203ns ± 0%  -0.56%        (p=0.014 n=20+18)
FmtFprintfPrefixedInt-12     200ns ± 2%     197ns ± 1%  -1.48%        (p=0.000 n=20+18)
FmtFprintfFloat-12           256ns ± 1%     256ns ± 0%  -0.21%        (p=0.008 n=18+20)
FmtManyArgs-12               805ns ± 0%     804ns ± 0%  -0.19%        (p=0.001 n=18+18)
GobDecode-12                7.21ms ± 1%    7.14ms ± 1%  -0.92%        (p=0.000 n=19+20)
GobEncode-12                5.88ms ± 1%    5.88ms ± 1%    ~           (p=0.641 n=18+19)
Gzip-12                      218ms ± 1%     218ms ± 1%    ~           (p=0.271 n=19+18)
Gunzip-12                   37.1ms ± 0%    36.9ms ± 0%  -0.29%        (p=0.000 n=18+17)
HTTPClientServer-12         78.1µs ± 2%    77.4µs ± 2%    ~           (p=0.070 n=19+19)
JSONEncode-12               15.5ms ± 1%    15.5ms ± 0%    ~           (p=0.063 n=20+18)
JSONDecode-12               56.1ms ± 0%    55.4ms ± 1%  -1.18%        (p=0.000 n=19+18)
Mandelbrot200-12            4.05ms ± 0%    4.06ms ± 0%  +0.29%        (p=0.001 n=18+18)
GoParse-12                  3.28ms ± 1%    3.21ms ± 1%  -2.30%        (p=0.000 n=20+20)
RegexpMatchEasy0_32-12      69.4ns ± 2%    69.3ns ± 1%    ~           (p=0.205 n=18+16)
RegexpMatchEasy0_1K-12       239ns ± 0%     239ns ± 0%    ~     (all samples are equal)
RegexpMatchEasy1_32-12      69.4ns ± 1%    69.4ns ± 1%    ~           (p=0.620 n=15+18)
RegexpMatchEasy1_1K-12       370ns ± 1%     369ns ± 2%    ~           (p=0.088 n=20+20)
RegexpMatchMedium_32-12      108ns ± 0%     108ns ± 0%    ~     (all samples are equal)
RegexpMatchMedium_1K-12     33.6µs ± 3%    33.5µs ± 3%    ~           (p=0.718 n=20+20)
RegexpMatchHard_32-12       1.68µs ± 1%    1.67µs ± 2%    ~           (p=0.316 n=20+20)
RegexpMatchHard_1K-12       50.5µs ± 3%    50.4µs ± 3%    ~           (p=0.659 n=20+20)
Revcomp-12                   381ms ± 1%     381ms ± 1%    ~           (p=0.916 n=19+18)
Template-12                 66.5ms ± 1%    65.8ms ± 2%  -1.08%        (p=0.000 n=20+20)
TimeParse-12                 317ns ± 0%     319ns ± 0%  +0.48%        (p=0.000 n=19+12)
TimeFormat-12                338ns ± 0%     338ns ± 0%    ~           (p=0.124 n=19+18)
[Geo mean]                  5.99µs         5.96µs       -0.54%

Change-Id: I638ffd9d9f178835bbfa499bac20bd7224f1a907
Reviewed-on: https://go-review.googlesource.com/22591
Reviewed-by: Rick Hudson <rlh@golang.org>
2016-04-29 15:08:13 +00:00
Austin Clements
3e2462387f [dev.garbage] runtime: eliminate mspan.start
This converts all remaining uses of mspan.start to instead use
mspan.base(). In many cases, this actually reduces the complexity of
the code.

Change-Id: If113840e00d3345a6cf979637f6a152e6344aee7
Reviewed-on: https://go-review.googlesource.com/22590
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
2016-04-29 03:53:17 +00:00
Austin Clements
2e8b74b695 [dev.garbage] runtime: document sysAlloc
In particular, it always returns an aligned pointer.

Change-Id: I763789a539a4bfd8b0efb36a39a80be1a479d3e2
Reviewed-on: https://go-review.googlesource.com/22558
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-29 03:53:12 +00:00
Rick Hudson
2fb75ea6c6 [dev.garbage] runtime: use sys.Ctz64 intrinsic
Our compilers now provides instrinsics including
sys.Ctz64 that support CTZ (count trailing zero)
instructions. This CL replaces the Go versions
of CTZ with the compiler intrinsic.

Count trailing zeros CTZ finds the least
significant 1 in a word and returns the number
of less significant 0s in the word.

Allocation uses the bitmap created by the garbage
collector to locate an unmarked object. The logic
takes a word of the bitmap, complements, and then
caches it. It then uses CTZ to locate an available
unmarked object. It then shifts marked bits out of
the bitmap word preparing it for the next search.
Once all the unmarked objects are used in the
cached work the bitmap gets another word and
repeats the process.

Change-Id: Id2fc42d1d4b9893efaa2e1bd01896985b7e42f82
Reviewed-on: https://go-review.googlesource.com/21366
Reviewed-by: Austin Clements <austin@google.com>
2016-04-29 00:00:50 +00:00
Rick Hudson
2063d5d903 [dev.garbage] runtime: restructure alloc and mark bits
Two changes are included here that are dependent on the other.
The first is that allocBits and gcamrkBits are changed to
a *uint8 which points to the first byte of that span's
mark and alloc bits. Several places were altered to
perform pointer arithmetic to locate the byte corresponding
to an object in the span. The actual bit corresponding
to an object is indexed in the byte by using the lower three
bits of the objects index.

The second change avoids the redundant calculation of an
object's index. The index is returned from heapBitsForObject
and then used by the functions indexing allocBits
and gcmarkBits.

Finally we no longer allocate the gc bits in the span
structures. Instead we use an arena based allocation scheme
that allows for a more compact bit map as well as recycling
and bulk clearing of the mark bits.

Change-Id: If4d04b2021c092ec39a4caef5937a8182c64dfef
Reviewed-on: https://go-review.googlesource.com/20705
Reviewed-by: Austin Clements <austin@google.com>
2016-04-29 00:00:47 +00:00
Rick Hudson
23aeb34df1 [dev.garbage] Merge remote-tracking branch 'origin/master' into HEAD
Change-Id: I282fd9ce9db435dfd35e882a9502ab1abc185297
2016-04-27 18:46:52 -04:00
Rick Hudson
f8d0d4fd59 [dev.garbage] runtime: cleanup and optimize span.base()
Prior to this CL the base of a span was calculated in various
places using shifts or calls to base(). This CL now
always calls base() which has been optimized to calculate the
base of the span when the span is initialized and store that
value in the span structure.

Change-Id: I661f2bfa21e3748a249cdf049ef9062db6e78100
Reviewed-on: https://go-review.googlesource.com/20703
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:59 +00:00
Rick Hudson
8dda1c4c08 [dev.garbage] runtime: remove heapBitsSweepSpan
Prior to this CL the sweep phase was responsible for locating
all objects that were about to be freed and calling a function
to process the object. This was done by the function
heapBitsSweepSpan. Part of processing included calls to
tracefree and msanfree as well as counting how many objects
were freed.

The calls to tracefree and msanfree have been moved into the
gcmalloc routine and called when the object is about to be
reallocated. The counting of free objects has been optimized
using an array based popcnt algorithm and if all the objects
in a span are free then span is freed.

Similarly the code to locate the next free object has been
optimized to use an array based ctz (count trailing zero).
Various hot paths in the allocation logic have been optimized.

At this point the garbage benchmark is within 3% of the 1.6
release.

Change-Id: I00643c442e2ada1685c010c3447e4ea8537d2dfa
Reviewed-on: https://go-review.googlesource.com/20201
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:57 +00:00
Rick Hudson
4093481523 [dev.garbage] runtime: add bit and cache ctz64 (count trailing zero)
Add to each span a 64 bit cache (allocCache) of the allocBits
at freeindex. allocCache is shifted such that the lowest bit
corresponds to the bit freeindex. allocBits uses a 0 to
indicate an object is free, on the other hand allocCache
uses a 1 to indicate an object is free. This facilitates
ctz64 (count trailing zero) which counts the number of 0s
trailing the least significant 1. This is also the index of
the least significant 1.

Each span maintains a freeindex indicating the boundary
between allocated objects and unallocated objects. allocCache
is shifted as freeindex is incremented such that the low bit
in allocCache corresponds to the bit a freeindex in the
allocBits array.

Currently ctz64 is written in Go using a for loop so it is
not very efficient. Use of the hardware instruction will
follow. With this in mind comparisons of the garbage
benchmark are as follows.

1.6 release        2.8 seconds
dev:garbage branch 3.1 seconds.

Profiling shows the go implementation of ctz64 takes up
1% of the total time.

Change-Id: If084ed9c3b1eda9f3c6ab2e794625cb870b8167f
Reviewed-on: https://go-review.googlesource.com/20200
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:54 +00:00
Rick Hudson
e4ac2d4acc [dev.garbage] runtime: replace ref with allocCount
This is a renaming of the field ref to the
more appropriate allocCount. The field
holds the number of objects in the span
that are currently allocated. Some throws
strings were adjusted to more accurately
convey the meaning of allocCount.

Change-Id: I10daf44e3e9cc24a10912638c7de3c1984ef8efe
Reviewed-on: https://go-review.googlesource.com/19518
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:49 +00:00
Rick Hudson
3479b065d4 [dev.garbage] runtime: allocate directly from GC mark bits
Instead of building a freelist from the mark bits generated
by the GC this CL allocates directly from the mark bits.

The approach moves the mark bits from the pointer/no pointer
heap structures into their own per span data structures. The
mark/allocation vectors consist of a single mark bit per
object. Two vectors are maintained, one for allocation and
one for the GC's mark phase. During the GC cycle's sweep
phase the interpretation of the vectors is swapped. The
mark vector becomes the allocation vector and the old
allocation vector is cleared and becomes the mark vector that
the next GC cycle will use.

Marked entries in the allocation vector indicate that the
object is not free. Each allocation vector maintains a boundary
between areas of the span already allocated from and areas
not yet allocated from. As objects are allocated this boundary
is moved until it reaches the end of the span. At this point
further allocations will be done from another span.

Since we no longer sweep a span inspecting each freed object
the responsibility for maintaining pointer/scalar bits in
the heapBitMap containing is now the responsibility of the
the routines doing the actual allocation.

This CL is functionally complete and ready for performance
tuning.

Change-Id: I336e0fc21eef1066e0b68c7067cc71b9f3d50e04
Reviewed-on: https://go-review.googlesource.com/19470
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:47 +00:00
Rick Hudson
dc65a82eff [dev.garbage] runtime: mark/allocation helper functions
The gcmarkBits is a bit vector used by the GC to mark
reachable objects. Once a GC cycle is complete the gcmarkBits
swap places with the allocBits. allocBits is then used directly
by malloc to locate free objects, thus avoiding the
construction of a linked free list. This CL introduces a set
of helper functions for manipulating gcmarkBits and allocBits
that will be used by later CLs to realize the actual
algorithm. Minimal attempts have been made to optimize these
helper routines.

Change-Id: I55ad6240ca32cd456e8ed4973c6970b3b882dd34
Reviewed-on: https://go-review.googlesource.com/19420
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Rick Hudson <rlh@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-27 21:54:44 +00:00
Rick Hudson
e1c4e9a754 [dev.garbage] runtime: refactor next free object
In preparation for changing how the next free object is chosen
refactor and consolidate code into a single function.

Change-Id: I6836cd88ed7cbf0b2df87abd7c1c3b9fabc1cbd8
Reviewed-on: https://go-review.googlesource.com/19317
Reviewed-by: Austin Clements <austin@google.com>
2016-04-27 21:54:41 +00:00
Rick Hudson
2ac8bdc52a [dev.garbage] runtime: bitmap allocation data structs
The bitmap allocation data structure prototypes. Before
this is released these underlying data structures need
to be more performant but the signatures of helper
functions utilizing these structures will remain stable.

Change-Id: I5ace12f2fb512a7038a52bbde2bfb7e98783bcbe
Reviewed-on: https://go-review.googlesource.com/19221
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-27 21:54:35 +00:00
Austin Clements
6002e01e34 runtime: allocate black during GC
Currently we allocate white for most of concurrent marking. This is
based on the classical argument that it produces less floating
garbage, since allocations during GC may not get linked into the heap
and allocating white lets us reclaim these. However, it's not clear
how often this actually happens, especially since our write barrier
shades any pointer as soon as it's installed in the heap regardless of
the color of the slot.

On the other hand, allocating black has several advantages that seem
to significantly outweigh this downside.

1) It naturally bounds the total scan work to the live heap size at
the start of a GC cycle. Allocating white does not, and thus depends
entirely on assists to prevent the heap from growing faster than it
can be scanned.

2) It reduces the total amount of scan work per GC cycle by the size
of newly allocated objects that are linked into the heap graph, since
objects allocated black never need to be scanned.

3) It reduces total write barrier work since more objects will already
be black when they are linked into the heap graph.

This gives a slight overall improvement in benchmarks.

name              old time/op  new time/op  delta
XBenchGarbage-12  2.24ms ± 0%  2.21ms ± 1%  -1.32%  (p=0.000 n=18+17)

name                      old time/op    new time/op    delta
BinaryTree17-12              2.60s ± 3%     2.53s ± 3%  -2.56%  (p=0.000 n=20+20)
Fannkuch11-12                2.08s ± 1%     2.08s ± 0%    ~     (p=0.452 n=19+19)
FmtFprintfEmpty-12          45.1ns ± 2%    45.3ns ± 2%    ~     (p=0.367 n=19+20)
FmtFprintfString-12          131ns ± 3%     129ns ± 0%  -1.60%  (p=0.000 n=20+16)
FmtFprintfInt-12             122ns ± 0%     121ns ± 2%  -0.86%  (p=0.000 n=16+19)
FmtFprintfIntInt-12          187ns ± 1%     186ns ± 1%    ~     (p=0.514 n=18+19)
FmtFprintfPrefixedInt-12     189ns ± 0%     188ns ± 1%  -0.54%  (p=0.000 n=16+18)
FmtFprintfFloat-12           256ns ± 0%     254ns ± 1%  -0.43%  (p=0.000 n=17+19)
FmtManyArgs-12               769ns ± 0%     763ns ± 0%  -0.72%  (p=0.000 n=18+18)
GobDecode-12                7.08ms ± 2%    7.00ms ± 1%  -1.22%  (p=0.000 n=20+20)
GobEncode-12                5.88ms ± 0%    5.88ms ± 1%    ~     (p=0.406 n=18+18)
Gzip-12                      214ms ± 0%     214ms ± 1%    ~     (p=0.103 n=17+18)
Gunzip-12                   37.6ms ± 0%    37.6ms ± 0%    ~     (p=0.563 n=17+17)
HTTPClientServer-12         77.2µs ± 3%    76.9µs ± 2%    ~     (p=0.606 n=20+20)
JSONEncode-12               15.1ms ± 1%    15.2ms ± 2%    ~     (p=0.138 n=19+19)
JSONDecode-12               53.3ms ± 1%    53.1ms ± 1%  -0.33%  (p=0.000 n=19+18)
Mandelbrot200-12            4.04ms ± 1%    4.04ms ± 1%    ~     (p=0.075 n=19+18)
GoParse-12                  3.30ms ± 1%    3.29ms ± 1%  -0.57%  (p=0.000 n=18+16)
RegexpMatchEasy0_32-12      69.5ns ± 1%    69.9ns ± 3%    ~     (p=0.822 n=18+20)
RegexpMatchEasy0_1K-12       237ns ± 1%     237ns ± 0%    ~     (p=0.398 n=19+18)
RegexpMatchEasy1_32-12      69.8ns ± 2%    69.5ns ± 1%    ~     (p=0.090 n=20+16)
RegexpMatchEasy1_1K-12       371ns ± 1%     372ns ± 1%    ~     (p=0.178 n=19+20)
RegexpMatchMedium_32-12      108ns ± 2%     108ns ± 3%    ~     (p=0.124 n=20+19)
RegexpMatchMedium_1K-12     33.9µs ± 2%    34.2µs ± 4%    ~     (p=0.309 n=20+19)
RegexpMatchHard_32-12       1.75µs ± 2%    1.77µs ± 4%  +1.28%  (p=0.018 n=19+18)
RegexpMatchHard_1K-12       52.7µs ± 1%    53.4µs ± 4%  +1.23%  (p=0.013 n=15+18)
Revcomp-12                   354ms ± 1%     359ms ± 4%  +1.27%  (p=0.043 n=20+20)
Template-12                 63.6ms ± 2%    63.7ms ± 2%    ~     (p=0.654 n=20+18)
TimeParse-12                 313ns ± 1%     316ns ± 2%  +0.80%  (p=0.014 n=17+20)
TimeFormat-12                332ns ± 0%     329ns ± 0%  -0.66%  (p=0.000 n=16+16)
[Geo mean]                  51.7µs         51.6µs       -0.09%

Change-Id: I2214a6a0e4f544699ea166073249a8efdf080dc0
Reviewed-on: https://go-review.googlesource.com/21323
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 20:07:22 +00:00
Austin Clements
64a26b79ac runtime: simplify/optimize allocate-black a bit
Currently allocating black switches to the system stack (which is
probably a historical accident) and atomically updates the global
bytes marked stat. Since we're about to depend on this much more,
optimize it a bit by putting it back on the regular stack and updating
the per-P bytes marked stat, which gets lazily folded into the global
bytes marked stat.

Change-Id: Ibbe16e5382d3fd2256e4381f88af342bf7020b04
Reviewed-on: https://go-review.googlesource.com/22170
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 20:07:20 +00:00
Austin Clements
479501c14c runtime: count black allocations toward scan work
Currently we count black allocations toward the scannable heap size,
but not toward the scan work we've done so far. This is clearly
inconsistent (we have, in effect, scanned these allocations and since
they're already black, we're not going to scan them again). Worse, it
means we don't count black allocations toward the scannable heap size
as of the *next* GC because this is based on the amount of scan work
we did in this cycle.

Fix this by counting black allocations as scan work. Currently the GC
spends very little time in allocate-black mode, so this probably
hasn't been a problem, but this will become important when we switch
to always allocating black.

Change-Id: If6ff693b070c385b65b6ecbbbbf76283a0f9d990
Reviewed-on: https://go-review.googlesource.com/22119
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 20:07:17 +00:00
Martin Möhrmann
7e460e70d9 runtime: use type int to specify size for newarray
Consistently use type int for the size argument of
runtime.newarray, runtime.reflect_unsafe_NewArray
and reflect.unsafe_NewArray.

Change-Id: Ic77bf2dde216c92ca8c49462f8eedc0385b6314e
Reviewed-on: https://go-review.googlesource.com/22311
Reviewed-by: Keith Randall <khr@golang.org>
Run-TryBot: Martin Möhrmann <martisch@uos.de>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-21 04:15:14 +00:00
Keith Randall
001e8e8070 runtime: simplify mallocgc flag argument
mallocgc can calculate noscan itself.  The only remaining
flag argument is needzero, so we just make that a boolean arg.

Fixes #15379

Change-Id: I839a70790b2a0c9dbcee2600052bfbd6c8148e20
Reviewed-on: https://go-review.googlesource.com/22290
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-20 14:02:22 +00:00
Josh Bleecher Snyder
a4dd6ea152 runtime: add maxSliceCap
This avoids expensive division calculations
for many common slice element sizes.

name                      old time/op  new time/op  delta
MakeSlice-8               51.9ns ± 3%  35.1ns ± 2%  -32.41%  (p=0.000 n=10+10)
GrowSliceBytes-8          44.1ns ± 2%  44.1ns ± 1%     ~     (p=0.984 n=10+10)
GrowSliceInts-8           60.9ns ± 3%  60.9ns ± 3%     ~     (p=0.698 n=10+10)
GrowSlicePtr-8             131ns ± 1%   120ns ± 2%   -8.41%   (p=0.000 n=8+10)
GrowSliceStruct24Bytes-8   111ns ± 2%   103ns ± 3%   -7.23%    (p=0.000 n=8+8)

Change-Id: I2630eb3d73c814db030cad16e620ea7fecbbd312
Reviewed-on: https://go-review.googlesource.com/22223
Reviewed-by: Keith Randall <khr@golang.org>
2016-04-19 21:38:52 +00:00
Emmanuel Odeke
e4f1d9cf2e runtime: make execution error panic values implement the Error interface
Make execution panics implement Error as
mandated by https://golang.org/ref/spec#Run_time_panics,
instead of panics with strings.

Fixes #14965

Change-Id: I7827f898b9b9c08af541db922cc24fa0800ff18a
Reviewed-on: https://go-review.googlesource.com/21214
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-04-10 01:16:30 +00:00
Matthew Dempsky
a03bdc3e6b runtime: eliminate unnecessary type conversions
Automated refactoring produced using github.com/mdempsky/unconvert.

Change-Id: Iacf871a4f221ef17f48999a464ab2858b2bbaa90
Reviewed-on: https://go-review.googlesource.com/20071
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-07 20:53:27 +00:00
Brad Fitzpatrick
5fea2ccc77 all: single space after period.
The tree's pretty inconsistent about single space vs double space
after a period in documentation. Make it consistently a single space,
per earlier decisions. This means contributors won't be confused by
misleading precedence.

This CL doesn't use go/doc to parse. It only addresses // comments.
It was generated with:

$ perl -i -npe 's,^(\s*// .+[a-z]\.)  +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.)  +([A-Z])')
$ go test go/doc -update

Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7
Reviewed-on: https://go-review.googlesource.com/20022
Reviewed-by: Rob Pike <r@golang.org>
Reviewed-by: Dave Day <djd@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-03-02 00:13:47 +00:00
Russ Cox
26397f1383 runtime: fix upper bound on out-of-memory print
It's possible for arena_start+MaxArena32 to wrap.
We do the right thing in the bounds check but not in the print.

For #13992 (to fix the print there, not the bug).

Change-Id: I4df845d0c03f0f35461b128e4f6765d3ccb71c6d
Reviewed-on: https://go-review.googlesource.com/18975
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
2016-01-27 04:58:44 +00:00
Shenghou Ma
14aacc2fd8 runtime: print address as hex in messages
Change-Id: I7ccf1b5001d77c4390479f53c0137ab02f98595b
Reviewed-on: https://go-review.googlesource.com/18685
Run-TryBot: Minux Ma <minux@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-01-18 23:48:06 +00:00
Austin Clements
87d939dee8 runtime: fix (sometimes major) underestimation of heap_live
Currently, we update memstats.heap_live from mcache.local_cachealloc
whenever we lock the heap (e.g., to obtain a fresh span or to release
an unused span). However, under the right circumstances,
local_cachealloc can accumulate allocations up to the size of
the *entire heap* without flushing them to heap_live. Specifically,
since span allocations from an mcentral don't lock the heap, if a
large number of pages are held in an mcentral and the application
continues to use and free objects of that size class (e.g., the
BinaryTree17 benchmark), local_cachealloc won't be flushed until the
mcentral runs out of spans.

This is a problem because, unlike many of the memory statistics that
are purely informative, heap_live is used to determine when the
garbage collector should start and how hard it should work.

This commit eliminates local_cachealloc, instead atomically updating
heap_live directly. To control contention, we do this only when
obtaining a span from an mcentral. Furthermore, we make heap_live
conservative: allocating a span assumes that all free slots in that
span will be used and accounts for these when the span is
allocated, *before* the objects themselves are. This is important
because 1) this triggers the GC earlier than necessary rather than
potentially too late and 2) this leads to a conservative GC rate
rather than a GC rate that is potentially too low.

Alternatively, we could have flushed local_cachealloc when it passed
some threshold, but this would require determining a threshold and
would cause heap_live to underestimate the true value rather than
overestimate.

Fixes #12199.

name                      old time/op    new time/op    delta
BinaryTree17-12              2.88s ± 4%     2.88s ± 1%    ~     (p=0.470 n=19+19)
Fannkuch11-12                2.48s ± 1%     2.48s ± 1%    ~     (p=0.243 n=16+19)
FmtFprintfEmpty-12          50.9ns ± 2%    50.7ns ± 1%    ~     (p=0.238 n=15+14)
FmtFprintfString-12          175ns ± 1%     171ns ± 1%  -2.48%  (p=0.000 n=18+18)
FmtFprintfInt-12             159ns ± 1%     158ns ± 1%  -0.78%  (p=0.000 n=19+18)
FmtFprintfIntInt-12          270ns ± 1%     265ns ± 2%  -1.67%  (p=0.000 n=18+18)
FmtFprintfPrefixedInt-12     235ns ± 1%     234ns ± 0%    ~     (p=0.362 n=18+19)
FmtFprintfFloat-12           309ns ± 1%     308ns ± 1%  -0.41%  (p=0.001 n=18+19)
FmtManyArgs-12              1.10µs ± 1%    1.08µs ± 0%  -1.96%  (p=0.000 n=19+18)
GobDecode-12                7.81ms ± 1%    7.80ms ± 1%    ~     (p=0.425 n=18+19)
GobEncode-12                6.53ms ± 1%    6.53ms ± 1%    ~     (p=0.817 n=19+19)
Gzip-12                      312ms ± 1%     312ms ± 2%    ~     (p=0.967 n=19+20)
Gunzip-12                   42.0ms ± 1%    41.9ms ± 1%    ~     (p=0.172 n=19+19)
HTTPClientServer-12         63.7µs ± 1%    63.8µs ± 1%    ~     (p=0.639 n=19+19)
JSONEncode-12               16.4ms ± 1%    16.4ms ± 1%    ~     (p=0.954 n=19+19)
JSONDecode-12               58.5ms ± 1%    57.8ms ± 1%  -1.27%  (p=0.000 n=18+19)
Mandelbrot200-12            3.86ms ± 1%    3.88ms ± 0%  +0.44%  (p=0.000 n=18+18)
GoParse-12                  3.67ms ± 2%    3.66ms ± 1%  -0.52%  (p=0.001 n=18+19)
RegexpMatchEasy0_32-12       100ns ± 1%     100ns ± 0%    ~     (p=0.257 n=19+18)
RegexpMatchEasy0_1K-12       347ns ± 1%     347ns ± 1%    ~     (p=0.527 n=18+18)
RegexpMatchEasy1_32-12      83.7ns ± 2%    83.1ns ± 2%    ~     (p=0.096 n=18+19)
RegexpMatchEasy1_1K-12       509ns ± 1%     505ns ± 1%  -0.75%  (p=0.000 n=18+19)
RegexpMatchMedium_32-12      130ns ± 2%     129ns ± 1%    ~     (p=0.962 n=20+20)
RegexpMatchMedium_1K-12     39.5µs ± 2%    39.4µs ± 1%    ~     (p=0.376 n=20+19)
RegexpMatchHard_32-12       2.04µs ± 0%    2.04µs ± 1%    ~     (p=0.195 n=18+17)
RegexpMatchHard_1K-12       61.4µs ± 1%    61.4µs ± 1%    ~     (p=0.885 n=19+19)
Revcomp-12                   540ms ± 2%     542ms ± 4%    ~     (p=0.552 n=19+17)
Template-12                 69.6ms ± 1%    71.2ms ± 1%  +2.39%  (p=0.000 n=20+20)
TimeParse-12                 357ns ± 1%     357ns ± 1%    ~     (p=0.883 n=18+20)
TimeFormat-12                379ns ± 1%     362ns ± 1%  -4.53%  (p=0.000 n=18+19)
[Geo mean]                  62.0µs         61.8µs       -0.44%

name              old time/op  new time/op  delta
XBenchGarbage-12  5.89ms ± 2%  5.81ms ± 2%  -1.41%  (p=0.000 n=19+18)

Change-Id: I96b31cca6ae77c30693a891cff3fe663fa2447a0
Reviewed-on: https://go-review.googlesource.com/17748
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-12-15 16:16:08 +00:00
Austin Clements
f9357cdec1 runtime: check for updated arena_end overflow
Currently, if an allocation is large enough that arena_end + size
overflows (which is not hard to do on 32-bit), we go ahead and call
sysReserve with the impossible base and length and depend on this to
either directly fail because the kernel can't possibly fulfill the
requested mapping (causing mheap.sysAlloc to return nil) or to succeed
with a mapping at some other address which will then be rejected as
outside the arena.

In order to make this less subtle, less dependent on the kernel
getting all of this right, and to eliminate the hopeless system call,
add an explicit overflow check.

Updates #13143. This real issue has been fixed by 0de59c2, but this is
a belt-and-suspenders improvement on top of that. It was uncovered by
my symbolic modeling of that bug.

Change-Id: I85fa868a33286fdcc23cdd7cdf86b19abf1cb2d1
Reviewed-on: https://go-review.googlesource.com/16961
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-11-17 00:16:36 +00:00
Austin Clements
4d39bb6a3a runtime: make mcache.tiny a uintptr
mcache.tiny is in non-GC'd memory, but points to heap memory. As a
result, there may or may not be write barriers when writing to
mcache.tiny. Make it clearer that funny things are going on by making
mcache.tiny a uintptr instead of an unsafe.Pointer.

Change-Id: I732a5b7ea17162f196a9155154bbaff8d4d00eac
Reviewed-on: https://go-review.googlesource.com/16963
Run-TryBot: Austin Clements <austin@google.com>
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-16 22:07:41 +00:00
Austin Clements
0de59c27eb runtime: handle sysReserve returning a pointer below the arena
In mheap.sysAlloc, if an allocation at arena_used would exceed
arena_end (but wouldn't yet push us past arena_start+_MaxArean32), it
trie to extend the arena reservation by another 256 MB. It extends the
arena by calling sysReserve, which, on 32-bit, calls mmap without
MAP_FIXED, which means the address is just a hint and the kernel can
put the mapping wherever it wants. In particular, mmap may choose an
address below arena_start (the kernel also chose arena_start, so there
could be lots of space below it). Currently, we don't detect this case
and, if it happens, mheap.sysAlloc will corrupt arena_end and
arena_used then return the low pointer to mheap.grow, which will crash
when it attempts to index in to h_spans with an underflowed index.

Fix this by checking not only that that p+p_size isn't too high, but
that p isn't too low.

Fixes #13143.

Change-Id: I8d0f42bd1484460282a83c6f1a6f8f0df7fb2048
Reviewed-on: https://go-review.googlesource.com/16927
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-11-16 17:32:40 +00:00
Austin Clements
97dc591534 runtime: avoid stat underflow crash
If the area returned by sysReserve in mheap.sysAlloc is outside the
usable arena, we sysFree it. We pass a fake stat pointer to sysFree
because we haven't added the allocation to any stat at that point.
However, we pass a 0 stat, so sysFree panics when it decrements the
stat because the fake stat underflows.

Fix this by setting the fake stat to the allocation size.

Updates #13143 (this is a prerequisite to fixing that bug).

Change-Id: I61a6c9be19ac1c95863cf6a8435e19790c8bfc9a
Reviewed-on: https://go-review.googlesource.com/16926
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-11-16 17:32:29 +00:00
Michael Matloob
432cb66f16 runtime: break out system-specific constants into package sys
runtime/internal/sys will hold system-, architecture- and config-
specific constants.

Updates #11647

Change-Id: I6db29c312556087a42e8d2bdd9af40d157c56b54
Reviewed-on: https://go-review.googlesource.com/16817
Reviewed-by: Russ Cox <rsc@golang.org>
2015-11-12 17:04:45 +00:00
Matthew Dempsky
c17c42e8a5 runtime: rewrite lots of foo_Bar(f, ...) into f.bar(...)
Applies to types fixAlloc, mCache, mCentral, mHeap, mSpan, and
mSpanList.

Two special cases:

1. mHeap_Scavenge() previously didn't take an *mheap parameter, so it
was specially handled in this CL.

2. mHeap_Free() would have collided with mheap's "free" field, so it's
been renamed to (*mheap).freeSpan to parallel its underlying
(*mheap).freeSpanLocked method.

Change-Id: I325938554cca432c166fe9d9d689af2bbd68de4b
Reviewed-on: https://go-review.googlesource.com/16221
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-12 00:34:58 +00:00
Austin Clements
bbf2da00fc runtime: remove GC start up/shutdown workaround in mallocgc
Currently mallocgc detects if the GC is in a state where it can't
assist, but also can't allocate uncontrolled and yields to help out
the GC. This was a workaround for periods when we were trying to
schedule the GC coordinator. It is no longer necessary because there
is no GC coordinator and malloc can always assist with any GC
transitions that are necessary.

Updates #11970.

Change-Id: I4f7beb7013e85e50ae99a3a8b0bb708ba49cbcd4
Reviewed-on: https://go-review.googlesource.com/16392
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-05 21:24:01 +00:00
Austin Clements
c99d7f7f85 runtime: decentralize mark done and mark termination
This moves all of the mark 1 to mark 2 transition and mark termination
to the mark done transition function. This means these transitions are
now handled on the goroutine that detected mark completion. This also
means that the GC coordinator and the background completion barriers
are no longer used and various workarounds to yield to the coordinator
are no longer necessary. These will be removed in follow-up commits.

One consequence of this is that mark workers now need to be
preemptible when performing the mark done transition. This allows them
to stop the world and to perform the final clean-up steps of GC after
restarting the world. They are only made preemptible while performing
this transition, so if the worker findRunnableGCWorker would schedule
isn't available, we didn't want to schedule it anyway.

Fixes #11970.

Change-Id: I9203a2d6287eeff62d589ec02ad9cb1e29ddb837
Reviewed-on: https://go-review.googlesource.com/16391
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-05 21:23:54 +00:00
Austin Clements
a51905fa04 runtime: decentralize sweep termination and mark transition
This moves all of GC initialization, sweep termination, and the
transition to concurrent marking in to the off->mark transition
function. This means it's now handled on the goroutine that detected
the state exit condition.

As a result, malloc no longer needs to Gosched() at the beginning of
the GC cycle to prevent over-allocation while the GC is starting up
because it will now *help* the GC to start up. The Gosched hack is
still necessary during GC shutdown (this is easy to test by enabling
gctrace and hitting Ctrl-S to block the gctrace output).

At this point, the GC coordinator still handles later phases. This
requires a small tweak to how we start the GC coordinator. Currently,
starting the GC coordinator is best-effort and may fail if the
coordinator is about to park from the previous cycle but hasn't yet.
We fix this by replacing the park/ready to wake up the coordinator
with a semaphore. This is temporary since the coordinator will be
going away in a few commits.

Updates #11970.

Change-Id: I2c6a11c91e72dfbc59c2d8e7c66146dee9a444fe
Reviewed-on: https://go-review.googlesource.com/16357
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-11-05 21:23:27 +00:00
Austin Clements
f54bcedce1 runtime: beginning of decentralized off->mark transition
This begins the conversion of the centralized GC coordinator to a
decentralized state machine by introducing the internal API that
triggers the first state transition from _GCoff to _GCmark (or
_GCmarktermination).

This change introduces the transition lock, the off->mark transition
condition (which is very similar to shouldtriggergc()), and the
general structure of a state transition. Since we're doing this
conversion in stages, it then falls back to the GC coordinator to
actually execute the cycle. We'll start moving logic out of the GC
coordinator and in to transition functions next.

This fixes a minor bug in gcstoptheworld debug mode where passing the
heap trigger once could trigger multiple STW GCs.

Updates #11970.

Change-Id: I964087dd190a639eb5766398f8e1bbf8b352902f
Reviewed-on: https://go-review.googlesource.com/16355
Reviewed-by: Rick Hudson <rlh@golang.org>
Run-TryBot: Austin Clements <austin@google.com>
2015-11-05 21:23:17 +00:00
David du Colombier
31430bda09 runtime: don't use FP when calling nextSample in the Plan 9 sighandler
In the Go signal handler on Plan 9, when a signal with
the _SigThrow flag is received, we call startpanic before
printing the stack trace.

The startpanic function calls systemstack which calls
startpanic_m. In the startpanic_m function, we call
allocmcache to allocate _g_.m.mcache. The problem is
that allocmcache calls nextSample, which does a floating
point operation to return a sampling point for heap profiling.

However, Plan 9 doesn't support floating point in the
signal handler.

This change adds a new function nextSampleNoFP, only
called when in the Plan 9 signal handler, which is
similar to nextSample, but avoids floating point.

Change-Id: Iaa30437aa0f7c8c84d40afbab7567ad3bd5ea2de
Reviewed-on: https://go-review.googlesource.com/16307
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2015-10-28 05:45:24 +00:00