This removes about 5% of φ-nodes in one large program
and eliminates many zero-value constants.
(This does cause some Idents to no longer map to an ssa.Value.
This is observable in the oracle, whose tests are here updated.)
R=gri, gri
CC=golang-dev
https://golang.org/cl/26980043
Users should be familiar with the sizes of all other types.
Currently we assume amd64 (as do other parts of the oracle,
e.g. go/build tags). Will parameterize later.
R=crawshaw
CC=golang-dev, gri
https://golang.org/cl/29710043
- fixed a couple of TODOs
- various cleanups along the way
- adjusted clients
Once submitted, clients of go/types that don't explicitly
specify Config.Import will need to add the extra import:
import _ "code.google.com/p/go.tools/go/gcimporter"
to install the default (gc) importer in go/types.
R=adonovan, gri
CC=golang-dev
https://golang.org/cl/26390043
A DebugRef associates a source expression E with an ssa.Value
V, but until now did not record whether V was the value or the
address of E. So, we would guess from the "pointerness" of
the Value, leading to confusion in some cases, e.g.
type N *N
var n N
n = &n // lvalue and rvalue are both pointers
Now we explicitly record 'IsAddress bool' in DebugRef, and
plumb this everywhere: through (*Function).ValueForExpr and
(*Program).VarValue, all the way to forming the pointer
analysis query.
Also:
- VarValue now treats each reference to a global distinctly,
just like it does for other vars. So:
var g int
func f() {
g = 1 // VarValue(g) == Const(1:int), !isAddress
print(g) // VarValue(g) == Global(g), isAddress
}
- DebugRefs are not emitted for references to predeclared
identifiers (nil, built-in).
- DebugRefs no longer prevent lifting of an Alloc var into a
register; now we update or discard the debug info.
- TestValueForExpr: improve coverage of ssa.EnclosingFunction
by putting expectations in methods and init funcs, not just
normal funcs.
- oracle: fix golden file broken by recent
(*types.Var).IsField change.
R=gri
CC=golang-dev
https://golang.org/cl/16610045
This allows us to run/analyze multiple tests.
Also it causes the production code packages to be properly initialized.
Also:
- cmd/ssadump: improved usage message (add example;
incorporate LoadInitialPackages usage; explain how -run
finds main).
- pointer, oracle, ssa/interp: use CreateTestMainPackage.
- ssa/builder.go: remove 'rundefers' instruction from package init,
which no longer uses 'defer'.
R=gri
CC=golang-dev
https://golang.org/cl/15920047
Motivation:
Previously, we assumed that the set of types for which a
complete method set (containing all synthesized wrapper
functions) is required at runtime was the set of types
used as operands to some *ssa.MakeInterface instruction.
In fact, this is an underapproximation because types can
be derived from other ones via reflection, and some of
these may need methods. The reflect.Type API allows *T to
be derived from T, and these may have different method
sets. Reflection also allows almost any subcomponent of a
type to be accessed (with one exception: given T, defined
'type T struct{S}', you can reach S but not struct{S}).
As a result, the pointer analysis was unable to generate
all necessary constraints before running the solver,
causing a crash when reflection derives types whose
methods are unavailable. (A similar problem would afflict
an ahead-of-time compiler based on ssa. The ssa/interp
interpreter was immune only because it does not require
all wrapper methods to be created before execution
begins.)
Description:
This change causes the SSA builder to record, for each
package, the set of all types with non-empty method sets that
are referenced within that package. This set is accessed via
Packages.TypesWithMethodSets(). Program.TypesWithMethodSets()
returns its union across all packages.
The set of references that matter are:
- types of operands to some MakeInterface instruction (as before)
- types of all exported package members
- all subcomponents of the above, recursively.
This is a conservative approximation to the set of types
whose methods may be called dynamically.
We define the owning package of a type as follows:
- the owner of a named type is the package in which it is defined;
- the owner of a pointer-to-named type is the owner of that named type;
- the owner of all other types is nil.
A package must include the method sets for all types that it
owns, and all subcomponents of that type that are not owned by
another package, recursively. Types with an owner appear in
exactly one package; types with no owner (such as struct{T})
may appear within multiple packages.
(A typical Go compiler would emit multiple copies of these
methods as weak symbols; a typical linker would eliminate
duplicates.)
Also:
- go/types/typemap: implement hash function for *Tuple.
- pointer: generate nodes/constraints for all of
ssa.Program.TypesWithMethodSets().
Add rtti.go regression test.
- Add API test of Package.TypesWithMethodSets().
- Set Function.Pkg to nil (again) for wrapper functions,
since these may be shared by many packages.
- Remove a redundant logging statement.
- Document that ssa CREATE phase is in fact sequential.
Fixesgolang/go#6605
R=gri
CC=golang-dev
https://golang.org/cl/14920056
Before, we would concatenate all the init() blocks together,
resulting in incorrect treatment of a recovered panic in one
init block: the implicit return would cause the subsequent ones
to be skipped.
The result is simpler, and closer to what gc does.
The additional functions are visible in the call graph,
so some tests required updating.
R=gri
CC=crawshaw, golang-dev
https://golang.org/cl/14671044
Since rev 4c5f46cc7b9d, error messages no longer contain
"file:line:col: " prefixes, so applying stripLocation to them
is incorrect.
Also: add rationale comment to callgraph2.go test.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13888044
Details:
- Warnings are reported as values in Result, not a callback in Config.
- remove TODO to eliminate Print callback. It's better than the alternative.
- remove unused Config.root field.
- hang Result off analysis object (impl. detail)
- reword TODO.
R=crawshaw
CC=golang-dev
https://golang.org/cl/14128043
The previous CL made the assumption that Root is the first
node, which is false for programs that import "reflect".
Reverted to the previous way: an explicit root field.
Added regression test (callgraph2) via oracle.
R=crawshaw
TBR=crawshaw
CC=golang-dev
https://golang.org/cl/13967043
Also: pointer.Analyze now returns a pointer.Result object,
containing the callgraph and the results of ssa.Value queries.
The oracle has been updated to use the new call and pointer APIs.
R=crawshaw, gri
CC=golang-dev
https://golang.org/cl/13915043
e.g. "oracle callgraph <package>"
Also: simplified error handling.
Eliminated oracle.errorf because it prepends "file:line:col: "
to the error message so the main function can't safely prepend "Error: ".
The position wasn't interesting though: it was just -pos, more or less.
R=crawshaw, dominik.honnef, r
CC=golang-dev
https://golang.org/cl/13864044
This CL is mostly a renaming s/json/serial/, abstracting the
oracle package away from any particular data syntax. (The
encoding/* machinery is very clean; clearly I should have
structured it this way from the outset.)
Supporting XML then becomes a one-liner in cmd/oracle/main.go.
Also: call MarshalIndent(), not Marshall() then Indent().
R=crawshaw
CC=golang-dev
https://golang.org/cl/13858046
(reflect.Value).Send
(reflect.Value).TrySend
(reflect.Value).Recv
(reflect.Value).TryRecv
(reflect.Type).ChanOf
(reflect.Type).In
(reflect.Type).Out
reflect.Indirect
reflect.MakeChan
Also:
- specialize genInvoke when the receiver is a reflect.Type under the
assumption that there's only one possible concrete type. This
makes all reflect.Type operations context-sensitive since the calls
are no longer dynamic.
- Rename all variables to match the actual parameter names used in
the reflect API.
- Add pointer.Config.Reflection flag
(exposed in oracle as --reflect, default false) to enable reflection.
It currently adds about 20% running time. I'll make it true after
the presolver is implemented.
- Simplified worklist datatype and solver main loop slightly
(~10% speed improvement).
- Use addLabel() utility to add a label to a PTS.
(Working on my 3 yr old 2x2GHz+4GB Mac vs 8x4GHz+24GB workstation,
one really notices the cost of pointer analysis.
Note to self: time to implement presolver.)
R=crawshaw
CC=golang-dev
https://golang.org/cl/13242062
The existing standalone Query function builds an importer, ssa.Program, oracle,
and query position, executes the query and returns the result.
For clients (such as Frederik Zipp's web-based github.com/fzipp/pythia tool)
that wish to load the program once and make several queries, we now expose
these as separate operations too. Here's a client, in pseudocode:
o := oracle.New(...)
for ... {
qpos := o.ParseQueryPos(...)
res := o.Query(mode, qpos)
print result
}
NB: this is a slight deoptimisation in the one-shot case since we have to
build the entire SSA program with debug info, not just the query package,
since we now don't know the query package at that time.
The 'exact' param to ParseQueryPos needs more thought since its
ideal value is a function of the query mode. This will do for now.
Details:
- expose Oracle type, New() func and Query() method.
- expose QueryPos type and ParseQueryPos func.
- improved package doc comment.
- un-exposed the "needs" bits.
- added test.
R=crawshaw
CC=frederik.zipp, golang-dev
https://golang.org/cl/13810043
Full help is only displayed when -help is requested;
CLI usage errors just remind the the user of this flag.
R=r, crawshaw
CC=golang-dev
https://golang.org/cl/13523048
Core:
reflect.TypeOf
reflect.ValueOf
reflect.Zero
reflect.Value.Interface
Maps:
(reflect.Value).MapIndex
(reflect.Value).MapKeys
(reflect.Value).SetMapIndex
(*reflect.rtype).Elem
(*reflect.rtype).Key
+ tests:
pointer/testdata/mapreflect.go.
oracle/testdata/src/main/reflection.go.
Interface objects (T, V...) have been renamed "tagged objects".
Abstraction: we model reflect.Value similar to
interface{}---as a pointer that points only to tagged
objects---but a reflect.Value may also point to an "indirect
tagged object", one in which the payload V is of type *T not T.
These are required because reflect.Values can hold lvalues,
e.g. when derived via Field() or Elem(), though we won't use
them till we get to structs and pointers.
Solving: each reflection intrinsic defines a new constraint
and resolution rule. Because of the nature of reflection,
generalizing across types, the resolution rules dynamically
create additional complex constraints during solving, where
previously only simple (copy) constraints were created.
This requires some solver changes:
The work done before the main solver loop (to attach new
constraints to the graph) is now done before each iteration,
in processNewConstraints.
Its loop over constraints is broken into two passes:
the first handles base (addr-of) constraints,
the second handles simple and complex constraints.
constraint.init() has been inlined. The only behaviour that
varies across constraints is ptr()
Sadly this will pessimize presolver optimisations, when we get
there; such is the price of reflection.
Objects: reflection intrinsics create objects (i.e. cause
memory allocations) with no SSA operation. We will represent
them as the cgnode of the instrinsic (e.g. reflect.New), so we
extend Labels and node.data to represent objects as a product
(not sum) of ssa.Value and cgnode and pull this out into its
own type, struct object. This simplifies a number of
invariants and saves space. The ntObject flag is now
represented by obj!=nil; the other flags are moved into
object.
cgnodes are now always recorded in objects/Labels for which it
is appropriate (all but those for globals, constants and the
shared contours for functions).
Also:
- Prepopulate the flattenMemo cache to consider reflect.Value
a fake pointer, not a struct.
- Improve accessors and documentation on type Label.
- @conctypes assertions renamed @types (since dyn. types needn't be concrete).
- add oracle 'describe' test on an interface (missing, an oversight).
R=crawshaw
CC=golang-dev
https://golang.org/cl/13418048
The existing check rejected only free identifiers defined in
file scope, i.e. just imports.
+ regression test.
R=crawshaw, gri
CC=golang-dev
https://golang.org/cl/13256050
Every one of the oracle's query modes needs to have typed ASTs
available, at least transiently, so that the -pos flag can be
interpreted. (The only mode that doesn't need the -pos flag
is callgraph, but that needs PTA.) So we hard-code it to true.
This change fixes a bug in the 'implements' query that causes
-pos parsing to fail. (This wasn't exposed by the tests
because they are degenerate in that the query always occurs in
the main package, which is specified ad-hoc, i.e. as a source
file not an import path. That's unfortunate, but this
change renders the distinction uninteresting in future.)
R=crawshaw, dominik.honnef
CC=golang-dev
https://golang.org/cl/13334050
+ test.
Also:
- provide non-nil map to Importer.doImport0() to avoid a crash.
- reorganize oracle "needs" bits.
- reduce "needs" of 'freevars' and 'implements' queries by avoiding
ssa.Packages when types.Package suffices.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13421046
Background: some ssa.Values represent lvalues, e.g.
var g = new(string)
the *ssa.Global g is a **string, the address of what users
think of as the global g.
Querying pts(g) returns a singleton containing the object g, a
*string. What users really want to see is what that in turn
points to, i.e. the label for the call to new().
This change now lets users make "indirect" pointer queries,
i.e. for pts(*v) where v is an ssa.Value. The oracle makes an
indirect query if the type of the ssa.Value differs from the
source expression type by a pointer, i.e. it's an lvalue.
In other words, we're hiding the fact that compilers (e.g. ssa) internally represent globals by their address.
+ Tests.
This serendipitously fixed an outstanding bug mentioned in the
describe.go
R=crawshaw
CC=golang-dev
https://golang.org/cl/13532043
Motivation: pointer analysis tools (like the oracle) want the
user to specify a set of initial packages, like 'go test'.
This change enables the user to specify a set of packages on
the command line using importer.LoadInitialPackages(args).
Each argument is interpreted as either:
- a comma-separated list of *.go source files together
comprising one non-importable ad-hoc package.
e.g. "src/pkg/net/http/triv.go" gives us [main].
- an import path, denoting both the imported package
and its non-importable external test package, if any.
e.g. "fmt" gives us [fmt, fmt_test].
Current type-checker limitations mean that only the first
import path may contribute tests: multiple packages augmented
by *_test.go files could create import cycles, which 'go test'
avoids by building a separate executable for each one.
That approach is less attractive for static analysis.
Details: (many files touched, but importer.go is the crux)
importer:
- PackageInfo.Importable boolean indicates whether
package is importable.
- un-expose Importer.Packages; expose AllPackages() instead.
- CreatePackageFromArgs has become LoadInitialPackages.
- imports() moved to util.go, renamed importsOf().
- InitialPackagesUsage usage message exported to clients.
- the package name for ad-hoc packages now comes from the
'package' decl, not "main".
ssa.Program:
- added CreatePackages() method
- PackagesByPath un-exposed, renamed 'imported'.
- expose AllPackages and ImportedPackage accessors.
oracle:
- describe: explain and workaround a go/types bug.
Misc:
- Removed various unnecessary error.Error() calls in Printf args.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13579043
The typechecker uses *types.Func for functions, concrete
methods and interface methods; and *types.Var for variables
and struct fields. This change makes clear which kind of
function we're describing. (We can't do it for vars since
go/types doesn't expose enough information, yet.)
Also: add "omitempty" to one JSON field.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13527044
The previous notation (sans '#') now yields an error but is
"reserved for future use", e.g. to denote line/column offsets.
Will implement as needed.
R=r, crawshaw
CC=golang-dev
https://golang.org/cl/13526043
1. ParseFiles (in util.go) parses each file in its own goroutine.
2. (*Importer).LoadPackage asynchronously prefetches the
import graph by scanning the imports of each loaded package
and calling LoadPackage on each one.
LoadPackage is now thread-safe and idempotent: it uses a
condition variable per package; the first goroutine to
request a package becomes responsible for loading it and
broadcasts to the others (waiting) when it becomes ready.
ssadump runs 34% faster when loading the oracle.
Also, refactorings:
- delete SourceLoader mechanism; just expose go/build.Context directly.
- CreateSourcePackage now also returns an error directly,
rather than via PackageInfo.Err, since every client wants that.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13509045
See json.go for interface specification.
Example usage:
% oracle -format=json -mode=callgraph code.google.com/p/go.tools/cmd/oracle
+ Tests, based on (small) golden files.
Overview:
Each <query>Result structure has been "lowered" so that all
but the most trivial logic in each display() function has
been moved to the main query.
Each one now has a toJSON method that populates a json.Result
struct. Though the <query>Result structs are similar to the
correponding JSON protocol, they're not close enough to be
used directly; for example, the former contain richer
semantic entities (token.Pos, ast.Expr, ssa.Value,
pointer.Pointer, etc) whereas JSON contains only their
printed forms using Go basic types.
The choices of what levels of abstractions the two sets of
structs should have is somewhat arbitrary. We may want
richer information in the JSON output in future.
Details:
- oracle.Main has been split into oracle.Query() and the
printing of the oracle.Result.
- the display() method no longer needs an *oracle param, only
a print function.
- callees: sort the result for determinism.
- callees: compute the union across all contexts.
- callers: sort the results for determinism.
- describe(package): fixed a bug in the predicate for method
accessibility: an unexported method defined in pkg A may
belong to a type defined in package B (via
embedding/promotion) and may thus be accessible to A. New
accessibleMethods() utility fixes this.
- describe(type): filter methods by accessibility.
- added tests of 'callgraph'.
- pointer: eliminated the 'caller CallGraphNode' parameter from
pointer.Context.Call callback since it was redundant w.r.t
site.Caller().
- added warning if CGO_ENABLED is unset.
R=crawshaw
CC=golang-dev
https://golang.org/cl/13270045
Pro: no shell quotation needed.
Con: can't be parsed by (the perpetually useless) Scanf.
R=crawshaw, dgryski
CC=golang-dev
https://golang.org/cl/13441043
diff -u3: the 3 is redundant and an error on darwin; redundant and unnecessary on linux.
R=golang-dev, bradfitz
CC=golang-dev
https://golang.org/cl/13231044
+ Tests.
+ Emacs integration.
+ Emacs integration test.
+ very rudimentary Vim integration. Needs some love from a Vim user.
TODO (in follow-ups):
- More tests would be good.
We'll need to make the output order deterministic in more places.
- Documentation.
R=gri, crawshaw, dominik.honnef
CC=golang-dev
https://golang.org/cl/9502043