If you set GODEBUG=cgocheck=2 the runtime package will use the write
barrier to detect cases where a Go program writes a Go pointer into
non-Go memory. In conjunction with the existing cgo checks, and the
not-yet-implemented cgo check for exported functions, this should
reliably detect all cases (that do not import the unsafe package) in
which a Go pointer is incorrectly shared with C code. This check is
optional because it turns on the write barrier at all times, which is
known to be expensive.
Update #12416.
Change-Id: I549d8b2956daa76eac853928e9280e615d6365f4
Reviewed-on: https://go-review.googlesource.com/16899
Reviewed-by: Russ Cox <rsc@golang.org>
In mheap.sysAlloc, if an allocation at arena_used would exceed
arena_end (but wouldn't yet push us past arena_start+_MaxArean32), it
trie to extend the arena reservation by another 256 MB. It extends the
arena by calling sysReserve, which, on 32-bit, calls mmap without
MAP_FIXED, which means the address is just a hint and the kernel can
put the mapping wherever it wants. In particular, mmap may choose an
address below arena_start (the kernel also chose arena_start, so there
could be lots of space below it). Currently, we don't detect this case
and, if it happens, mheap.sysAlloc will corrupt arena_end and
arena_used then return the low pointer to mheap.grow, which will crash
when it attempts to index in to h_spans with an underflowed index.
Fix this by checking not only that that p+p_size isn't too high, but
that p isn't too low.
Fixes#13143.
Change-Id: I8d0f42bd1484460282a83c6f1a6f8f0df7fb2048
Reviewed-on: https://go-review.googlesource.com/16927
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
If the area returned by sysReserve in mheap.sysAlloc is outside the
usable arena, we sysFree it. We pass a fake stat pointer to sysFree
because we haven't added the allocation to any stat at that point.
However, we pass a 0 stat, so sysFree panics when it decrements the
stat because the fake stat underflows.
Fix this by setting the fake stat to the allocation size.
Updates #13143 (this is a prerequisite to fixing that bug).
Change-Id: I61a6c9be19ac1c95863cf6a8435e19790c8bfc9a
Reviewed-on: https://go-review.googlesource.com/16926
Reviewed-by: Ian Lance Taylor <iant@golang.org>
golang.org/cl/16346 changed the runtime on linux/386 to invoke the vsyscall
helper via a PIC sequence (CALL 0x10(GS)) when dynamically linking. But it's
actually quite easy to make that code sequence work all the time, so do that,
and remove the ugly machinery that passed the buildmode from the go tool to the
assembly.
This means enlarging m.tls so that we can safely access 0x10(GS) (GS is set to
&m.tls + 4, so 0x10(GS) accesses m_tls[5]).
Change-Id: I1345c34029b149cb5f25320bf19a3cdd73a056fa
Reviewed-on: https://go-review.googlesource.com/16796
Reviewed-by: Ian Lance Taylor <iant@golang.org>
A nosplit comment was added to reflect.typelinks accidentally in
https://golang.org/cl/98510044. There is only one caller of
reflect.typelinks, reflect.typesByString, and that function is not
nosplit. There is no reason for reflect.typelinks to be nosplit.
Change-Id: I0fd3cc66fafcd92643e38e53fa586d6b2f868a0a
Reviewed-on: https://go-review.googlesource.com/16932
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
These now live in runtime/internal/sys.
Change-Id: I270597142516512bfc1395419e51d8083ba1663f
Reviewed-on: https://go-review.googlesource.com/16891
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Allows removing fields that aren't relevant to a particular OS or
changing their types to match the underlying OS system calls they'll
be used for.
Change-Id: I5cea89ee77b4e7b985bff41337e561887c3272ff
Reviewed-on: https://go-review.googlesource.com/16176
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
We're allocating TLS storage for m0 anyway, so might as well use it.
Change-Id: I7dc20bbea5320c8ab8a367f18a9540706751e771
Reviewed-on: https://go-review.googlesource.com/16890
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Michael Hudson-Doyle <michael.hudson@canonical.com>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
This requires changing the tls access code to match the patterns documented in
the ABI documentation or the system linker will "optimize" it into ridiculousness.
With this change, -buildmode=pie works, although as it is tested in testshared,
the tests are not run yet.
Change-Id: I1efa6687af0a5b8db3385b10f6542a49056b2eb3
Reviewed-on: https://go-review.googlesource.com/15971
Reviewed-by: Russ Cox <rsc@golang.org>
The PowerPC ISA does not have a PC-relative load instruction, which poses
obvious challenges when generating position-independent code. The way the ELFv2
ABI addresses this is to specify that r2 points to a per "module" (shared
library or executable) TOC pointer. Maintaining this pointer requires
cooperation between codegen and the system linker:
* Non-leaf functions leave space on the stack at r1+24 to save the TOC pointer.
* A call to a function that *might* have to go via a PLT stub must be followed
by a nop instruction that the system linker can replace with "ld r1, 24(r1)"
to restore the TOC pointer (only when dynamically linking Go code).
* When calling a function via a function pointer, the address of the function
must be in r12, and the first couple of instructions (the "global entry
point") of the called function use this to derive the address of the TOC
for the module it is in.
* When calling a function that is implemented in the same module, the system
linker adjusts the call to skip over the instructions mentioned above (the
"local entry point"), assuming that r2 is already correctly set.
So this changeset adds the global entry point instructions, sets the metadata so
the system linker knows where the local entry point is, inserts code to save the
TOC pointer at 24(r1), adds a nop after any call not known to be local and copes
with the odd non-local code transfer in the runtime (e.g. the stuff around
jmpdefer). It does not actually compile PIC yet.
Change-Id: I7522e22bdfd2f891745a900c60254fe9e372c854
Reviewed-on: https://go-review.googlesource.com/15967
Reviewed-by: Russ Cox <rsc@golang.org>
darwin/386, freebsd/386, and linux/386 use a setldt system call to
setup each M's thread-local storage area, and they need access to the
M's id for this. The current code copies m.id into m.tls[0] (and this
logic has been cargo culted to OSes like NetBSD and OpenBSD, which
don't even need m.id to configure TLS), and then the 386 assembly
loads m.tls[0]... but since the assembly code already has a pointer to
the M, it might as well just load m.id directly.
Change-Id: I1a7278f1ec8ebda8d1de3aa3a61993070e3a8cdf
Reviewed-on: https://go-review.googlesource.com/16881
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The larger stack frames causes the nosplit stack to overflow so the next change
increases the stackguard.
Change-Id: Ib2b4f24f0649eb1d13e3a58d265f13d1b6cc9bf9
Reviewed-on: https://go-review.googlesource.com/15964
Reviewed-by: Russ Cox <rsc@golang.org>
Larger stack frames mean nosplit functions use more stack and so the limit
needs to increase.
The change to test/nosplit.go is a bit ugly but I can't really think of a
way to make it nicer.
Change-Id: I2616b58015f0b62abbd62951575fcd0d2d8643c2
Reviewed-on: https://go-review.googlesource.com/16504
Reviewed-by: Russ Cox <rsc@golang.org>
Apparently its last use was removed in CL 8899.
Change-Id: I4f3a789b3cc4c249582e81463af62b576a281e40
Reviewed-on: https://go-review.googlesource.com/16880
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
The new revision is 389d49d4943780efbfcd2a434f4462b6d0f23c44 (Nov 13, 2015).
The runtimes are built using the new x/build/cmd/racebuild utility.
This update fixes a bug in race detection algorithm that can
lead to occasional false negatives (#10589). But generally just
brings in an up-to-date runtime.
Update #8653Fixes#10589
Change-Id: I7ac9614d014ee89c2302ce5e096d326ef293f367
Reviewed-on: https://go-review.googlesource.com/16827
Reviewed-by: Keith Randall <khr@golang.org>
As per mdempsky's comment on golang.org/cl/14204, textflag.h is
copied to the includes dir by cmd/dist, and the copy in
runtime/internal/atomic is not actually being used.
Updates #11647
Change-Id: Ie95c08903a9df54cea4c70ee9d5291176f7b5609
Reviewed-on: https://go-review.googlesource.com/16871
Run-TryBot: Michael Matloob <matloob@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Somehow these were left out of the orignial CL.
Updates #11647
Change-Id: I058a30eaa25fbb72d60e7fb6bc9ff0a3b54fdb2a
Reviewed-on: https://go-review.googlesource.com/16870
Reviewed-by: Minux Ma <minux@golang.org>
I made a copy of the per-arch _CacheLineSize definitons when checking in
runtime/internal/atomic. Now that runtime/internal/sys is checked in,
we can use the definition there.
Change-Id: I7242f6b633e4164f033b67ff471416b9d71c64d2
Reviewed-on: https://go-review.googlesource.com/16847
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
sigprof tracebacks the stack across systemstack switches to make
profile tracebacks more complete. However, it does this even if the
user stack is currently being copied, which means it may be in an
inconsistent state that will cause the traceback to panic.
One specific way this can happen is during stack shrinking. Some
goroutine blocks for STW, then enters gchelper, which then assists
with root marking. If that root marking happens to pick the original
goroutine and its stack needs to be shrunk, it will begin to copy that
stack. During this copy, the stack is generally inconsistent and, in
particular, the actual locations of the stack barriers and their
recorded locations are temporarily out of sync. If a SIGPROF happens
during this inconsistency, it will walk the stack all the way back to
the blocked goroutine and panic when it fails to unwind the stack
barriers.
Fix this by disallowing jumping to the user stack during SIGPROF if
that user stack is in the process of being copied.
Fixes#12932.
Change-Id: I9ef694c2c01e3653e292ce22612418dd3daff1b4
Reviewed-on: https://go-review.googlesource.com/16819
Reviewed-by: Daniel Morsing <daniel.morsing@gmail.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
runtime/internal/sys will hold system-, architecture- and config-
specific constants.
Updates #11647
Change-Id: I6db29c312556087a42e8d2bdd9af40d157c56b54
Reviewed-on: https://go-review.googlesource.com/16817
Reviewed-by: Russ Cox <rsc@golang.org>
cgo_ppc64x.go:7: +build comment must appear before package clause and be followed by a blank line
Change-Id: Ib6dedddae70cc75dc3f137eb37ea338a64f8b595
Reviewed-on: https://go-review.googlesource.com/16835
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Andrew Gerrand <adg@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Change-Id: I419f3b8bf1bddffd4a775b0cd7b98f0239fe19cb
Reviewed-on: https://go-review.googlesource.com/14458
Reviewed-by: Minux Ma <minux@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Linux/mips64 uses a different signal table. To avoid code copying,
signal table is factored out from signal_linux.go to
sigtab_linux_generic.go. And a mips64-specific version is added.
Change-Id: I842d7a7467c330bf772855fde01aecc77a42316b
Reviewed-on: https://go-review.googlesource.com/14993
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Linux/mips64 has a different sigset type and some different constants.
os2_linux.go is renamed to os2_linux_generic.go, and not used in mips64.
The corresponding file os2_linux_mips64x.go is added.
Change-Id: Ief83845a2779f7fe048d236d3c7da52b627ab533
Reviewed-on: https://go-review.googlesource.com/14992
Reviewed-by: Minux Ma <minux@golang.org>
Linux/mips64 uses a different type of sigset. To deal with it, related
functions in os1_linux.go is refactored to os1_linux_generic.go
(used for non-mips64 architectures), and os1_linux_mips64x.go (only used
in mips64{,le}), to avoid code copying.
Change-Id: I5cadfccd86bfc4b30bf97e12607c3c614903ea4c
Reviewed-on: https://go-review.googlesource.com/14991
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Change-Id: I381c03d957a0dccae5f655f02e92760e5c0e9629
Reviewed-on: https://go-review.googlesource.com/14929
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
files for unsupported architectures are deleted, as it would require
changing cmd/dist to recognize their names as build tags (probably
need a separated CL).
Change-Id: Ifd164b014867d39b4924d1b859fb84317dce4ab0
Reviewed-on: https://go-review.googlesource.com/14928
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Reviewed-by: Minux Ma <minux@golang.org>
Applies to types fixAlloc, mCache, mCentral, mHeap, mSpan, and
mSpanList.
Two special cases:
1. mHeap_Scavenge() previously didn't take an *mheap parameter, so it
was specially handled in this CL.
2. mHeap_Free() would have collided with mheap's "free" field, so it's
been renamed to (*mheap).freeSpan to parallel its underlying
(*mheap).freeSpanLocked method.
Change-Id: I325938554cca432c166fe9d9d689af2bbd68de4b
Reviewed-on: https://go-review.googlesource.com/16221
Reviewed-by: Ian Lance Taylor <iant@golang.org>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
It was disabled because of the lack of external linking.
Change-Id: Iccb4a4ef8c57d048d53deabe4e0f4e6b9dccce33
Reviewed-on: https://go-review.googlesource.com/16797
Reviewed-by: Ian Lance Taylor <iant@golang.org>
The GC now handles the root marking jobs as part of general marking,
so work.markfor is no longer used.
Change-Id: I6c3b23fed27e4e7ea6430d6ca7ba25ae4d04ed14
Reviewed-on: https://go-review.googlesource.com/16811
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
When we're jumping time forward, it means everyone is asleep, so there
should always be an M available. Furthermore, this causes both
allocation and write barriers in contexts that may be running without
a P (such as in sysmon).
Hence, replace this allocation with a throw.
Updates #10600.
Change-Id: I2cee70d5db828d0044082878995949edb25dda5f
Reviewed-on: https://go-review.googlesource.com/16815
Reviewed-by: Russ Cox <rsc@golang.org>
Currently traceBuf keeps track of where it is in the trace buffer by
also maintaining a slice that points in to this buffer with an initial
length of 0 and a cap of the length of the array. All writes to this
buffer are done by appending to the slice (as long as the bounds
checks are right, it will never overflow and the append won't allocate
a new slice).
Each of these appends generates a write barrier. As long as we never
overflow the buffer, this write barrier won't fire, but this wreaks
havoc with eliminating write barriers from the tracing code. If we
were to overflow the buffer, this would both allocate and invoke a
write barrier, both things that are dicey at best to do in many of the
contexts tracing happens. It also wastes space in the traceBuf and
leads to more complex code and more complex generated code.
Replace this slice trick with keeping track of a simple array
position.
Updates #10600.
Change-Id: I0a63eecec1992e195449f414ed47653f66318d0e
Reviewed-on: https://go-review.googlesource.com/16814
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
The tracing code is currently called from contexts such as sysmon and
the scheduler where write barriers are not allowed. Unfortunately,
while the common paths through the tracing code do not have write
barriers, many of the less common paths dealing with buffer overflow
and recycling do.
This change replaces all *traceBufs with traceBufPtrs. In the style of
guintptr, etc., the GC does not trace traceBufPtrs and write barriers
do not apply when these pointers are written. Since traceBufs are
allocated from non-GC'd memory and manually managed, this is always
safe.
Updates #10600.
Change-Id: I52b992d36d1b634ebd855c8cde27947ec14f59ba
Reviewed-on: https://go-review.googlesource.com/16812
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Commit 7407d8e was rebased over the switch to runtime/internal/atomic
and introduced a call to xadd64, which no longer exists. Fix that
call.
Change-Id: I99c93469794c16504ae4a8ffe3066ac382c66a3a
Reviewed-on: https://go-review.googlesource.com/16816
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Reviewed-by: Rick Hudson <rlh@golang.org>
Currently, sweeping is performed before allocating a span by charging
for the entire size of the span requested, rather than the number of
bytes actually available for allocation from the returned span. That
is, if the returned span is 8K, but already has 6K in use, the mutator
is charged for 8K of heap allocation even though it can only allocate
2K more from the span. As a result, proportional sweep is
over-aggressive and tends to finish much earlier than it needs to.
This effect is more amplified by fragmented heaps.
Fix this by reimbursing the mutator for the used space in a span once
it has allocated that span. We still have to charge up-front for the
worst-case because we don't know which span the mutator will get, but
at least we can correct the over-charge once it has a span, which will
go toward later span allocations.
This has negligible effect on the throughput of the go1 benchmarks and
the garbage benchmark.
Fixes#12040.
Change-Id: I0e23e7a4ccf126cca000fed5067b20017028dd6b
Reviewed-on: https://go-review.googlesource.com/16515
Reviewed-by: Rick Hudson <rlh@golang.org>