The SudoG used to sit on the stack, so it was cheap to allocated
and didn't need to be cleaned up when finished.
For the conversion to Go, we had to move sudog off the stack
for a few reasons, so we added a cache of recently used sudogs
to keep allocation cheap. But we didn't add any of the necessary
cleanup before adding a SudoG to the new cache, and so the cached
SudoGs had stale pointers inside them that have caused all sorts
of awful, hard to debug problems.
CL 155760043 made sure SudoG.elem is cleaned up.
CL 150520043 made sure SudoG.selectdone is cleaned up.
This CL makes sure SudoG.next, SudoG.prev, and SudoG.waitlink
are cleaned up. I should have done this when I did the other two
fields; instead I wasted a week tracking down a leak they caused.
A dangling SudoG.waitlink can point into a sudogcache list that
has been "forgotten" in order to let the GC collect it, but that
dangling .waitlink keeps the list from being collected.
And then the list holding the SudoG with the dangling waitlink
can find itself in the same situation, and so on. We end up
with lists of lists of unusable SudoGs that are still linked into
the object graph and never collected (given the right mix of
non-trivial selects and non-channel synchronization).
More details in golang.org/issue/9110.
Fixes#9110.
LGTM=r
R=r
CC=dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/177870043
The garbage collector is now written in Go.
There is plenty to clean up (just like on dev.cc).
all.bash passes on darwin/amd64, darwin/386, linux/amd64, linux/386.
TBR=rlh
R=austin, rlh, bradfitz
CC=golang-codereviews
https://golang.org/cl/173250043
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
The conversion was done with an automated tool and then
modified only as necessary to make it compile and run.
[This CL is part of the removal of C code from package runtime.
See golang.org/s/dev.cc for an overview.]
LGTM=r
R=r, daniel.morsing
CC=austin, dvyukov, golang-codereviews, iant, khr
https://golang.org/cl/172260043
Removes another dangling pointer that might
cause a memory leak in 1.4 or crash the GC in 1.5.
LGTM=rlh
R=golang-codereviews
CC=golang-codereviews, iant, khr, r, rlh
https://golang.org/cl/150520043
This change was necessary on the dev.garbage branch
to keep the garbage collector from seeing pointers into
invalid heap areas.
On this default (Go 1.4) branch, the change removes
some possibility for memory leaks.
LGTM=khr
R=golang-codereviews, khr
CC=golang-codereviews, iant, r, rlh
https://golang.org/cl/155760043
In old conservative Go, this could cause memory leaks.
A new pickier collector might reasonably crash when it saw one of these.
LGTM=rlh
R=rlh
CC=golang-codereviews
https://golang.org/cl/147480043
In linker, refuse to write conservative (array of pointers) as the
garbage collection type for any variable in the data/bss GC program.
In the linker, attach the Go type to an already-read C declaration
during dedup. This gives us Go types for C globals for free as long
as the cmd/dist-generated Go code contains the declaration.
(Most runtime C declarations have a corresponding Go declaration.
Both are bss declarations and so the linker dedups them.)
In cmd/dist, add a few more C files to the auto-Go-declaration list
in order to get Go type information for the C declarations into the linker.
In C compiler, mark all non-pointer-containing global declarations
and all string data as NOPTR. This allows them to exist in C files
without any corresponding Go declaration. Count C function pointers
as "non-pointer-containing", since we have no heap-allocated C functions.
In runtime, add NOPTR to the remaining pointer-containing declarations,
none of which refer to Go heap objects.
In runtime, also move os.Args and syscall.envs data into runtime-owned
variables. Otherwise, in programs that do not import os or syscall, the
runtime variables named os.Args and syscall.envs will be missing type
information.
I believe that this CL eliminates the final source of conservative GC scanning
in non-SWIG Go programs, and therefore...
Fixes#909.
LGTM=iant
R=iant
CC=golang-codereviews
https://golang.org/cl/149770043
This makes the GC and the stack copying agree about how
to interpret the defer structures. Previously, only the stack
copying treated them precisely.
This removes an untyped memory allocation and fixes
at least three copystack bugs.
To make sure the GC can find the deferred argument
frame until it has been copied, keep a Defer on the defer list
during its execution.
In addition to making it possible to remove the untyped
memory allocation, keeping the Defer on the list fixes
two races between copystack and execution of defers
(in both gopanic and Goexit). The problem is that once
the defer has been taken off the list, a stack copy that
happens before the deferred arguments have been copied
back to the stack will not update the arguments correctly.
The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit
(variations on the existing TestDeferPtrs) pass now but
failed before this CL.
In addition to those fixes, keeping the Defer on the list
helps correct a dangling pointer error during copystack.
The traceback routines walk the Defer chain to provide
information about where a panic may resume execution.
When the executing Defer was not on the Defer chain
but instead linked from the Panic chain, the traceback
had to walk the Panic chain too. But Panic structs are
on the stack and being updated by copystack.
Traceback's use of the Panic chain while copystack is
updating those structs means that it can follow an
updated pointer and find itself reading from the new stack.
The new stack is usually all zeros, so it sees an incorrect
early end to the chain. The new TestPanicUseStack makes
this happen at tip and dies when adjustdefers finds an
unexpected argp. The new StackCopyPoison mode
causes an earlier bad dereference instead.
By keeping the Defer on the list, traceback can avoid
walking the Panic chain at all, making it okay for copystack
to update the Panics.
We'd have the same problem for any Defers on the stack.
There was only one: gopanic's dabort. Since we are not
taking the executing Defer off the chain, we can use it
to do what dabort was doing, and then there are no
Defers on the stack ever, so it is okay for traceback to use
the Defer chain even while copystack is executing:
copystack cannot modify the Defer chain.
LGTM=khr
R=khr
CC=dvyukov, golang-codereviews, iant, rlh
https://golang.org/cl/141490043
Replacing gosched with Gosched broke some builds because
some of the call sites are at times when the stack cannot be grown.
TBR=khr
CC=golang-codereviews
https://golang.org/cl/142000043
This CL contains compiler+runtime changes that detect C code
running on Go (not g0, not gsignal) stacks, and it contains
corrections for what it detected.
The detection works by changing the C prologue to use a different
stack guard word in the G than Go prologue does. On the g0 and
gsignal stacks, that stack guard word is set to the usual
stack guard value. But on ordinary Go stacks, that stack
guard word is set to ^0, which will make any stack split
check fail. The C prologue then calls morestackc instead
of morestack, and morestackc aborts the program with
a message about running C code on a Go stack.
This check catches all C code running on the Go stack
except NOSPLIT code. The NOSPLIT code is allowed,
so the check is complete. Since it is a dynamic check,
the code must execute to be caught. But unlike the static
checks we've been using in cmd/ld, the dynamic check
works with function pointers and other indirect calls.
For example it caught sigpanic being pushed onto Go
stacks in the signal handlers.
Fixes#8667.
LGTM=khr, iant
R=golang-codereviews, khr, iant
CC=golang-codereviews, r
https://golang.org/cl/133700043