This CL makes it possible to run make.bash with
GOOS and GOARCH set to something other than
the native host GOOS and GOARCH.
As part of the CL, the tool directory moves from bin/tool/
to pkg/tool/goos_goarch where goos and goarch are
the values for the host system (running the build), not
the target. pkg/ is not technically appropriate, but C objects
are there now tool (pkg/obj/) so this puts all the generated
binaries in one place (rm -rf $GOROOT/pkg cleans everything).
Including goos_goarch in the name allows different systems
to share a single $GOROOT on a shared file system.
Fixes#2920.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5645093
Should be obviously correct. Includes minimal test case.
A future CL should clear up the logic around typecheckok and importpkg != nil someday.
R=rsc, dsymonds, rsc
CC=golang-dev
https://golang.org/cl/5652057
The go- is redundant now that the directory is required
to be inside $GOROOT. Rob LGTMed the idea.
R=golang-dev, gri
CC=golang-dev
https://golang.org/cl/5618044
Consequently, remove many package Makefiles,
and shorten the few that remain.
gomake becomes 'go tool make'.
Turn off test phases of run.bash that do not work,
flagged with $BROKEN. Future CLs will restore these,
but this seemed like a big enough CL already.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5601057
Also delete gotest, since it's messy to fix and slated for deletion anyway.
A couple of things outside src can't be tested any more. "go test" will be
fixed and these tests will be re-enabled. They're noisy for now.
Fixes#284.
R=rsc
CC=golang-dev
https://golang.org/cl/5598049
For example, if you are debugging an optimization
problem you can now run
GCFLAGS=-N gotest
This is a convention for make, not for the general build,
so it may go away or be done differently in the eventual
'go' command.
The plan is that people will be able to test their code for
rune safety by doing GCFLAGS=-r.
R=golang-dev, bradfitz, lvd
CC=golang-dev
https://golang.org/cl/5294042
The 512 MB array causes load delays on some systems.
Now that we have recover, we can do all the tests in
one binary, so that the delay is incurred just once.
R=golang-dev, r
CC=golang-dev
https://golang.org/cl/5142044
This CL changes the behavior of 'make install' and 'make test'
in the src/cmd directory and the src/pkg directory to have
each recursive make clean up after itself immediately.
It does the same in test/run, removing $F.$A and $A.out
(the common byproducts) between runs.
On machines with slow disks and aggressive kernel caching,
cleaning up immediately can mean that the intermediate
objects never get written to disk.
This change eliminates almost all the disk waiting during
all.bash on my laptop (a Thinkpad X201s with an SSD running Linux).
147.50u 19.95s 277.34r before
148.53u 21.64s 179.59r after
R=golang-dev, r, iant2
CC=golang-dev
https://golang.org/cl/4413042
The old heap maps used a multilevel table, but that
was overkill: there are only 1M entries on a 32-bit
machine and we can arrange to use a dense address
range on a 64-bit machine.
The heap map is in bss. The assumption is that if
we don't touch the pages they won't be mapped in.
Also moved some duplicated memory allocation
code out of the OS-specific files.
R=r
CC=golang-dev
https://golang.org/cl/4118042
Also, if the header is bad, exit with a non-zero status.
Other calls to Brdline in the tree, by category:
Reading symbol name from object file:
./cmd/5l/obj.c:486: name = Brdline(f, '\0');
./cmd/6l/obj.c:535: name = Brdline(f, '\0');
./cmd/8l/obj.c:564: name = Brdline(f, '\0');
./libmach/sym.c:292: cp = Brdline(bp, '\0');
Reading archive header line (fixed, short):
./cmd/gc/lex.c:287: if((a = Brdline(b, '\n')) == nil)
./cmd/gc/lex.c:303: if((p = Brdline(b, '\n')) == nil)
Reading object file header line (fixed, short):
./cmd/ld/lib.c:421: line = Brdline(f, '\n');
Reading undefined symbol list (unused code):
./cmd/ld/lib.c:773: while((l = Brdline(b, '\n')) != nil){
Implementing Brdstr:
./libbio/brdstr.c:36: p = Brdline(bp, delim);
The symbol names ones will cause a problem loudly if they
fail: they'll error out with symbol name too long. This means
that you can't define an enormous struct without giving the
type a name and then stick it in an interface, because the
type's symbol name will be too long for the object file.
Since this will be a loud failure instead of a silent one,
I'm willing to wait until it comes up in practice.
R=r
CC=golang-dev
https://golang.org/cl/1982041
but with less precision than hardware counterparts.
fixed a number of tests to output BUG when they failed.
changed the runner to distinghuish between output
and output containing ^BUG
R=rsc
CC=dho, golang-dev
https://golang.org/cl/1778041
* correct symbol table size
* do not reorder functions in output
* traceback
* signal handling
* use same code for go + defer
* handle leaf functions in symbol table
R=kaib, dpx
CC=golang-dev
https://golang.org/cl/884041
* example-based syntax errors (go.errors)
* enable bison's more specific errors
and translate grammar token names into
tokens like ++
* test cases
R=ken2, r, ken3
CC=golang-dev
https://golang.org/cl/194085
too hard to make it the same everywhere.
still checking for non-zero exit status though.
disable core files while running tests
R=r
http://go/go-review/1026037
tests are processed, and thus the run.out output. The default
LANG on Fedora 10, en_US.utf8, causes the tests to be sorted
differently--e.g., arrayindex1.go and arrayindex.go are sorted
in the opposite order.
R=r, rsc
http://go/go-review/1018022
special all-nacl.bash and test/run-nacl that
run just the tests known to work under nacl.
the rest requires closures.
fix another bug or two in syscall.
R=r
DELTA=420 (410 added, 8 deleted, 2 changed)
OCL=34882
CL=34907
4 known bugs; 0 unexpected bugs
which should be less scary to people
unfamiliar with the tests.
R=r
DELTA=44 (29 added, 12 deleted, 3 changed)
OCL=32460
CL=32464