1
0
mirror of https://github.com/golang/go synced 2024-11-26 11:48:03 -07:00

[dev.typeparams] cmd/compile/internal/types2: use type terms to represent unions

This is just an internal representation change for now.

Change-Id: I7e0126e9b17850ec020c2a60db13582761557bea
Reviewed-on: https://go-review.googlesource.com/c/go/+/338092
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Findley <rfindley@google.com>
This commit is contained in:
Robert Griesemer 2021-07-27 19:13:26 -07:00
parent 2fa8f00915
commit ff0c0dbca6
11 changed files with 130 additions and 79 deletions

View File

@ -308,7 +308,7 @@ func (w *tpWalker) isParameterized(typ Type) (res bool) {
}
case *Union:
return w.isParameterizedList(t.types)
return w.isParameterizedTermList(t.terms)
case *Signature:
// t.tparams may not be nil if we are looking at a signature
@ -336,7 +336,7 @@ func (w *tpWalker) isParameterized(typ Type) (res bool) {
return w.isParameterized(t.elem)
case *Named:
return w.isParameterizedList(t.targs)
return w.isParameterizedTypeList(t.targs)
case *TypeParam:
// t must be one of w.tparams
@ -349,7 +349,7 @@ func (w *tpWalker) isParameterized(typ Type) (res bool) {
return false
}
func (w *tpWalker) isParameterizedList(list []Type) bool {
func (w *tpWalker) isParameterizedTypeList(list []Type) bool {
for _, t := range list {
if w.isParameterized(t) {
return true
@ -358,6 +358,15 @@ func (w *tpWalker) isParameterizedList(list []Type) bool {
return false
}
func (w *tpWalker) isParameterizedTermList(list []*term) bool {
for _, t := range list {
if w.isParameterized(t.typ) {
return true
}
}
return false
}
// inferB returns the list of actual type arguments inferred from the type parameters'
// bounds and an initial set of type arguments. If type inference is impossible because
// unification fails, an error is reported if report is set to true, the resulting types
@ -466,7 +475,8 @@ func (check *Checker) structuralType(constraint Type) Type {
if u, _ := types.(*Union); u != nil {
if u.NumTerms() == 1 {
// TODO(gri) do we need to respect tilde?
return u.types[0]
t, _ := u.Term(0)
return t
}
return nil
}

View File

@ -30,7 +30,7 @@ func (t *Interface) is(f func(Type, bool) bool) bool {
// TODO(gri) should settle on top or nil to represent this case
return false // we must have at least one type! (was bug)
case *Union:
return t.is(func(typ Type, tilde bool) bool { return f(typ, tilde) })
return t.is(func(t *term) bool { return f(t.typ, t.tilde) })
default:
return f(t, false)
}
@ -260,8 +260,8 @@ func (check *Checker) interfaceType(ityp *Interface, iface *syntax.InterfaceType
sortMethods(ityp.methods)
// Compute type set with a non-nil *Checker as soon as possible
// to report any errors. Subsequent uses of type sets should be
// using this computed type set and won't need to pass in a *Checker.
// to report any errors. Subsequent uses of type sets will use
// this computed type set and won't need to pass in a *Checker.
check.later(func() { computeTypeSet(check, iface.Pos(), ityp) })
}

View File

@ -270,13 +270,13 @@ func (x *operand) assignableTo(check *Checker, T Type, reason *string) (bool, er
// x is an untyped value representable by a value of type T.
if isUntyped(Vu) {
if t, ok := Tu.(*Union); ok {
return t.is(func(t Type, tilde bool) bool {
return t.is(func(t *term) bool {
// TODO(gri) this could probably be more efficient
if tilde {
if t.tilde {
// TODO(gri) We need to check assignability
// for the underlying type of x.
}
ok, _ := x.assignableTo(check, t, reason)
ok, _ := x.assignableTo(check, t.typ, reason)
return ok
}), _IncompatibleAssign
}

View File

@ -238,20 +238,8 @@ func identical(x, y Type, cmpTags bool, p *ifacePair) bool {
// types - each type appears exactly once. Thus, two union types
// must contain the same number of types to have chance of
// being equal.
if y, ok := y.(*Union); ok && x.NumTerms() == y.NumTerms() {
// Every type in x.types must be in y.types.
// Quadratic algorithm, but probably good enough for now.
// TODO(gri) we need a fast quick type ID/hash for all types.
L:
for i, xt := range x.types {
for j, yt := range y.types {
if Identical(xt, yt) && x.tilde[i] == y.tilde[j] {
continue L // x is in y.types
}
}
return false // x is not in y.types
}
return true
if y, ok := y.(*Union); ok {
return identicalTerms(x.terms, y.terms)
}
case *Interface:

View File

@ -27,12 +27,13 @@ func TestSizeof(t *testing.T) {
{Pointer{}, 8, 16},
{Tuple{}, 12, 24},
{Signature{}, 44, 88},
{Union{}, 24, 48},
{Union{}, 12, 24},
{Interface{}, 40, 80},
{Map{}, 16, 32},
{Chan{}, 12, 24},
{Named{}, 88, 168},
{TypeParam{}, 28, 48},
{term{}, 12, 24},
{top{}, 0, 0},
// Objects

View File

@ -145,12 +145,12 @@ func (subst *subster) typ(typ Type) Type {
}
case *Union:
types, copied := subst.typeList(t.types)
terms, copied := subst.termList(t.terms)
if copied {
// TODO(gri) Remove duplicates that may have crept in after substitution
// (unlikely but possible). This matters for the Identical
// predicate on unions.
return newUnion(types, t.tilde)
return &Union{terms}
}
case *Interface:
@ -386,3 +386,21 @@ func (subst *subster) typeList(in []Type) (out []Type, copied bool) {
}
return
}
func (subst *subster) termList(in []*term) (out []*term, copied bool) {
out = in
for i, t := range in {
if u := subst.typ(t.typ); u != t.typ {
if !copied {
// first function that got substituted => allocate new out slice
// and copy all functions
new := make([]*term, len(in))
copy(new, out)
out = new
copied = true
}
out[i] = &term{t.tilde, u}
}
}
return
}

View File

@ -31,9 +31,9 @@ type (
_ interface{int|~ /* ERROR duplicate term int */ int }
_ interface{~int|~ /* ERROR duplicate term int */ int }
// For now we do not permit interfaces with ~ or in unions.
_ interface{~ /* ERROR cannot use interface */ interface{}}
_ interface{int|interface /* ERROR cannot use interface */ {}}
// For now we do not permit interfaces with methods in unions.
_ interface{~ /* ERROR invalid use of ~ */ interface{}}
_ interface{int|interface /* ERROR cannot use .* in union */ { m() }}
)
type (

View File

@ -60,7 +60,7 @@ func optype(typ Type) Type {
// If we have a union with a single entry, ignore
// any tilde because under(~t) == under(t).
if u, _ := a.(*Union); u != nil && u.NumTerms() == 1 {
a = u.types[0]
a, _ = u.Term(0)
}
if a != typ {
// a != typ and a is a type parameter => under(a) != typ, so this is ok

View File

@ -42,6 +42,13 @@ func (s *TypeSet) IsComparable() bool {
return s.comparable && tcomparable
}
// TODO(gri) IsTypeSet is not a great name. Find a better one.
// IsTypeSet reports whether the type set s is represented by a finite set of underlying types.
func (s *TypeSet) IsTypeSet() bool {
return !s.comparable && len(s.methods) == 0
}
// NumMethods returns the number of methods available.
func (s *TypeSet) NumMethods() int { return len(s.methods) }

View File

@ -162,14 +162,14 @@ func writeType(buf *bytes.Buffer, typ Type, qf Qualifier, visited []Type) {
buf.WriteString("⊥")
break
}
for i, e := range t.types {
for i, t := range t.terms {
if i > 0 {
buf.WriteByte('|')
}
if t.tilde[i] {
if t.tilde {
buf.WriteByte('~')
}
writeType(buf, e, qf, visited)
writeType(buf, t.typ, qf, visited)
}
case *Interface:

View File

@ -10,10 +10,8 @@ import "cmd/compile/internal/syntax"
// API
// A Union represents a union of terms.
// A term is a type with a ~ (tilde) flag.
type Union struct {
types []Type // types are unique
tilde []bool // if tilde[i] is set, terms[i] is of the form ~T
terms []*term
}
// NewUnion returns a new Union type with the given terms (types[i], tilde[i]).
@ -21,9 +19,9 @@ type Union struct {
// of no types.
func NewUnion(types []Type, tilde []bool) *Union { return newUnion(types, tilde) }
func (u *Union) IsEmpty() bool { return len(u.types) == 0 }
func (u *Union) NumTerms() int { return len(u.types) }
func (u *Union) Term(i int) (Type, bool) { return u.types[i], u.tilde[i] }
func (u *Union) IsEmpty() bool { return len(u.terms) == 0 }
func (u *Union) NumTerms() int { return len(u.terms) }
func (u *Union) Term(i int) (Type, bool) { t := u.terms[i]; return t.typ, t.tilde }
func (u *Union) Underlying() Type { return u }
func (u *Union) String() string { return TypeString(u, nil) }
@ -39,18 +37,20 @@ func newUnion(types []Type, tilde []bool) *Union {
return emptyUnion
}
t := new(Union)
t.types = types
t.tilde = tilde
t.terms = make([]*term, len(types))
for i, typ := range types {
t.terms[i] = &term{tilde[i], typ}
}
return t
}
// is reports whether f returned true for all terms (type, tilde) of u.
func (u *Union) is(f func(Type, bool) bool) bool {
// is reports whether f returns true for all terms of u.
func (u *Union) is(f func(*term) bool) bool {
if u.IsEmpty() {
return false
}
for i, t := range u.types {
if !f(t, u.tilde[i]) {
for _, t := range u.terms {
if !f(t) {
return false
}
}
@ -62,8 +62,8 @@ func (u *Union) underIs(f func(Type) bool) bool {
if u.IsEmpty() {
return false
}
for _, t := range u.types {
if !f(under(t)) {
for _, t := range u.terms {
if !f(under(t.typ)) {
return false
}
}
@ -83,7 +83,7 @@ func parseUnion(check *Checker, tlist []syntax.Expr) Type {
}
// Ensure that each type is only present once in the type list.
// It's ok to do this check at the end because it's not a requirement
// It's ok to do this check later because it's not a requirement
// for correctness of the code.
// Note: This is a quadratic algorithm, but unions tend to be short.
check.later(func() {
@ -96,7 +96,7 @@ func parseUnion(check *Checker, tlist []syntax.Expr) Type {
x := tlist[i]
pos := syntax.StartPos(x)
// We may not know the position of x if it was a typechecker-
// introduced ~T type of a type list entry T. Use the position
// introduced ~T term for a type list entry T. Use the position
// of T instead.
// TODO(gri) remove this test once we don't support type lists anymore
if !pos.IsKnown() {
@ -106,13 +106,24 @@ func parseUnion(check *Checker, tlist []syntax.Expr) Type {
}
u := under(t)
if tilde[i] && !Identical(u, t) {
f, _ := u.(*Interface)
if tilde[i] {
if f != nil {
check.errorf(x, "invalid use of ~ (%s is an interface)", t)
continue // don't report another error for t
}
if !Identical(u, t) {
check.errorf(x, "invalid use of ~ (underlying type of %s is %s)", t, u)
continue // don't report another error for t
}
if _, ok := u.(*Interface); ok {
// A single type with a ~ is a single-term union.
check.errorf(pos, "cannot use interface %s with ~ or inside a union (implementation restriction)", t)
}
// Stand-alone embedded interfaces are ok and are handled by the single-type case
// in the beginning. Embedded interfaces with tilde are excluded above. If we reach
// here, we must have at least two terms in the union.
if f != nil && !f.typeSet().IsTypeSet() {
check.errorf(pos, "cannot use %s in union (interface contains methods)", t)
continue // don't report another error for t
}
@ -164,25 +175,7 @@ func intersect(x, y Type) (r Type) {
yu, _ := y.(*Union)
switch {
case xu != nil && yu != nil:
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var types []Type
var tilde []bool
for j, y := range yu.types {
yt := yu.tilde[j]
if r, rt := xu.intersect(y, yt); r != nil {
// Terms x[i] and y[j] match: Select the one that
// is not a ~t because that is the intersection
// type. If both are ~t, they are identical:
// T ∩ T = T
// T ∩ ~t = T
// ~t ∩ T = T
// ~t ∩ ~t = ~t
types = append(types, r)
tilde = append(tilde, rt)
}
}
return newUnion(types, tilde)
return &Union{intersectTerms(xu.terms, yu.terms)}
case xu != nil:
if r, _ := xu.intersect(y, false); r != nil {
@ -216,14 +209,16 @@ func includes(list []Type, typ Type) bool {
// intersect computes the intersection of the union u and term (y, yt)
// and returns the intersection term, if any. Otherwise the result is
// (nil, false).
// TODO(gri) this needs to cleaned up/removed once we switch to lazy
// union type set computation.
func (u *Union) intersect(y Type, yt bool) (Type, bool) {
under_y := under(y)
for i, x := range u.types {
xt := u.tilde[i]
for _, x := range u.terms {
xt := x.tilde
// determine which types xx, yy to compare
xx := x
xx := x.typ
if yt {
xx = under(x)
xx = under(xx)
}
yy := y
if xt {
@ -239,3 +234,35 @@ func (u *Union) intersect(y Type, yt bool) (Type, bool) {
}
return nil, false
}
func identicalTerms(list1, list2 []*term) bool {
if len(list1) != len(list2) {
return false
}
// Every term in list1 must be in list2.
// Quadratic algorithm, but probably good enough for now.
// TODO(gri) we need a fast quick type ID/hash for all types.
L:
for _, x := range list1 {
for _, y := range list2 {
if x.equal(y) {
continue L // x is in list2
}
}
return false
}
return true
}
func intersectTerms(list1, list2 []*term) (list []*term) {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
for _, x := range list1 {
for _, y := range list2 {
if r := x.intersect(y); r != nil {
list = append(list, r)
}
}
}
return
}