1
0
mirror of https://github.com/golang/go synced 2024-11-22 02:44:39 -07:00

Add Count, Cycle, ZipWith, GroupBy, Repeat, RepeatTimes, Unique to exp/iterable.

Modify iterFunc to take chan<- instead of just chan.

R=rsc, dsymonds1
CC=golang-dev, r
https://golang.org/cl/160064
This commit is contained in:
Michael Elkins 2009-12-03 20:03:07 -08:00 committed by Russ Cox
parent e93132c982
commit f3d63bea42
2 changed files with 363 additions and 25 deletions

View File

@ -8,7 +8,10 @@
// something that would produce an infinite amount of data.
package iterable
import "container/vector"
import (
"container/list";
"container/vector";
)
type Iterable interface {
// Iter should return a fresh channel each time it is called.
@ -130,12 +133,9 @@ func Partition(iter Iterable, f func(interface{}) bool) (Iterable, Iterable) {
return Filter(iter, f), Filter(iter, not(f))
}
// TODO:
// - Zip
// helper type for the Take/TakeWhile/Drop/DropWhile functions.
// primarily used so that the .Iter() method can be attached
type iterFunc func(chan interface{})
type iterFunc func(chan<- interface{})
// provide the Iterable interface
func (v iterFunc) Iter() <-chan interface{} {
@ -145,26 +145,11 @@ func (v iterFunc) Iter() <-chan interface{} {
}
// Take returns an Iterable that contains the first n elements of iter.
func Take(iter Iterable, n int) Iterable {
return iterFunc(func(ch chan interface{}) {
defer close(ch);
if n <= 0 {
return
}
m := n;
for v := range iter.Iter() {
ch <- v;
m--;
if m == 0 {
return
}
}
})
}
func Take(iter Iterable, n int) Iterable { return Slice(iter, 0, n) }
// TakeWhile returns an Iterable that contains elements from iter while f is true.
func TakeWhile(iter Iterable, f func(interface{}) bool) Iterable {
return iterFunc(func(ch chan interface{}) {
return iterFunc(func(ch chan<- interface{}) {
for v := range iter.Iter() {
if !f(v) {
break
@ -177,7 +162,7 @@ func TakeWhile(iter Iterable, f func(interface{}) bool) Iterable {
// Drop returns an Iterable that returns each element of iter after the first n elements.
func Drop(iter Iterable, n int) Iterable {
return iterFunc(func(ch chan interface{}) {
return iterFunc(func(ch chan<- interface{}) {
m := n;
for v := range iter.Iter() {
if m > 0 {
@ -192,7 +177,7 @@ func Drop(iter Iterable, n int) Iterable {
// DropWhile returns an Iterable that returns each element of iter after the initial sequence for which f returns true.
func DropWhile(iter Iterable, f func(interface{}) bool) Iterable {
return iterFunc(func(ch chan interface{}) {
return iterFunc(func(ch chan<- interface{}) {
drop := true;
for v := range iter.Iter() {
if drop {
@ -206,3 +191,153 @@ func DropWhile(iter Iterable, f func(interface{}) bool) Iterable {
close(ch);
})
}
// Cycle repeats the values of iter in order infinitely.
func Cycle(iter Iterable) Iterable {
return iterFunc(func(ch chan<- interface{}) {
for {
for v := range iter.Iter() {
ch <- v
}
}
})
}
// Chain returns an Iterable that concatentates all values from the specified Iterables.
func Chain(args []Iterable) Iterable {
return iterFunc(func(ch chan<- interface{}) {
for _, e := range args {
for v := range e.Iter() {
ch <- v
}
}
close(ch);
})
}
// Zip returns an Iterable of []interface{} consisting of the next element from
// each input Iterable. The length of the returned Iterable is the minimum of
// the lengths of the input Iterables.
func Zip(args []Iterable) Iterable {
return iterFunc(func(ch chan<- interface{}) {
defer close(ch);
if len(args) == 0 {
return
}
iters := make([]<-chan interface{}, len(args));
for i := 0; i < len(iters); i++ {
iters[i] = args[i].Iter()
}
for {
out := make([]interface{}, len(args));
for i, v := range iters {
out[i] = <-v;
if closed(v) {
return
}
}
ch <- out;
}
})
}
// ZipWith returns an Iterable containing the result of executing f using arguments read from a and b.
func ZipWith2(f func(c, d interface{}) interface{}, a, b Iterable) Iterable {
return Map(Zip([]Iterable{a, b}), func(a1 interface{}) interface{} {
arr := a1.([]interface{});
return f(arr[0], arr[1]);
})
}
// ZipWith returns an Iterable containing the result of executing f using arguments read from a, b and c.
func ZipWith3(f func(d, e, f interface{}) interface{}, a, b, c Iterable) Iterable {
return Map(Zip([]Iterable{a, b, c}), func(a1 interface{}) interface{} {
arr := a1.([]interface{});
return f(arr[0], arr[1], arr[2]);
})
}
// Slice returns an Iterable that contains the elements from iter
// with indexes in [start, stop).
func Slice(iter Iterable, start, stop int) Iterable {
return iterFunc(func(ch chan<- interface{}) {
defer close(ch);
i := 0;
for v := range iter.Iter() {
switch {
case i >= stop:
return
case i >= start:
ch <- v
}
i++;
}
})
}
// Repeat generates an infinite stream of v.
func Repeat(v interface{}) Iterable {
return iterFunc(func(ch chan<- interface{}) {
for {
ch <- v
}
})
}
// RepeatTimes generates a stream of n copies of v.
func RepeatTimes(v interface{}, n int) Iterable {
return iterFunc(func(ch chan<- interface{}) {
for i := 0; i < n; i++ {
ch <- v
}
close(ch);
})
}
// Group is the type for elements returned by the GroupBy function.
type Group struct {
Key interface{}; // key value for matching items
Vals Iterable; // Iterable for receiving values in the group
}
// Key defines the interface required by the GroupBy function.
type Grouper interface {
// Return the key for the given value
Key(interface{}) interface{};
// Compute equality for the given keys
Equal(a, b interface{}) bool;
}
// GroupBy combines sequences of logically identical values from iter using k
// to generate a key to compare values. Each value emitted by the returned
// Iterable is of type Group, which contains the key used for matching the
// values for the group, and an Iterable for retrieving all the values in the
// group.
func GroupBy(iter Iterable, k Grouper) Iterable {
return iterFunc(func(ch chan<- interface{}) {
var curkey interface{}
var lst *list.List;
// Basic strategy is to read one group at a time into a list prior to emitting the Group value
for v := range iter.Iter() {
kv := k.Key(v);
if lst == nil || !k.Equal(curkey, kv) {
if lst != nil {
ch <- Group{curkey, lst}
}
lst = list.New();
curkey = kv;
}
lst.PushBack(v);
}
if lst != nil {
ch <- Group{curkey, lst}
}
close(ch);
})
}
// Unique removes duplicate values which occur consecutively using id to compute keys.
func Unique(iter Iterable, id Grouper) Iterable {
return Map(GroupBy(iter, id), func(v interface{}) interface{} { return v.(Group).Key })
}

View File

@ -5,6 +5,7 @@
package iterable
import (
"container/vector";
"testing";
)
@ -28,7 +29,11 @@ func TestArrayTypes(t *testing.T) {
}
}
var oneToFive = IntArray{1, 2, 3, 4, 5}
var (
oneToFive = IntArray{1, 2, 3, 4, 5};
sixToTen = IntArray{6, 7, 8, 9, 10};
elevenToTwenty = IntArray{11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
)
func isNegative(n interface{}) bool { return n.(int) < 0 }
func isPositive(n interface{}) bool { return n.(int) > 0 }
@ -182,3 +187,201 @@ func TestDropWhile(t *testing.T) {
res = DropWhile(oneToFive, func(v interface{}) bool { return v.(int) > 1000 });
assertArraysAreEqual(t, Data(res), oneToFive);
}
func TestCycle(t *testing.T) {
res := Cycle(oneToFive);
exp := []int{1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4};
// read the first nineteen values from the iterable
out := make([]interface{}, 19);
for i, it := 0, res.Iter(); i < 19; i++ {
out[i] = <-it
}
assertArraysAreEqual(t, out, exp);
res2 := Cycle(sixToTen);
exp2 := []int{6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 6, 7, 8, 9};
for i, it := 0, res2.Iter(); i < 19; i++ {
out[i] = <-it
}
assertArraysAreEqual(t, out, exp2);
// ensure first iterator was not harmed
for i, it := 0, res.Iter(); i < 19; i++ {
out[i] = <-it
}
assertArraysAreEqual(t, out, exp);
}
func TestChain(t *testing.T) {
exp := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
res := Chain([]Iterable{oneToFive, sixToTen, elevenToTwenty});
assertArraysAreEqual(t, Data(res), exp);
// reusing the same iterator should produce the same result again
assertArraysAreEqual(t, Data(res), exp);
// test short read from Chain
i := 0;
out := make([]interface{}, 4);
for v := range res.Iter() {
out[i] = v;
i++;
if i == len(out) {
break
}
}
assertArraysAreEqual(t, out, exp[0:4]);
// test zero length array
res = Chain([]Iterable{});
assertArraysAreEqual(t, Data(res), []int{});
}
func TestZipWith(t *testing.T) {
exp := []int{7, 9, 11, 13, 15};
// f with 2 args and 1 return value
f := func(a, b interface{}) interface{} { return a.(int) + b.(int) };
res := ZipWith2(f, oneToFive, sixToTen);
assertArraysAreEqual(t, Data(res), exp);
// test again to make sure returns new iter each time
assertArraysAreEqual(t, Data(res), exp);
// test a function with 3 args
f2 := func(a, b, c interface{}) interface{} { return a.(int) + b.(int) + c.(int) };
res = ZipWith3(f2, oneToFive, sixToTen, oneToFive);
exp = []int{8, 11, 14, 17, 20};
assertArraysAreEqual(t, Data(res), exp);
// test a function with multiple values returned
f3 := func(a, b interface{}) interface{} { return ([]interface{}{a.(int) + 1, b.(int) + 1}) };
res = ZipWith2(f3, oneToFive, sixToTen);
exp2 := [][]int{[]int{2, 7}, []int{3, 8}, []int{4, 9}, []int{5, 10}, []int{6, 11}};
i := 0;
for v := range res.Iter() {
out := v.([]interface{});
assertArraysAreEqual(t, out, exp2[i]);
i++;
}
// test different length iterators--should stop after shortest is exhausted
res = ZipWith2(f, elevenToTwenty, oneToFive);
exp = []int{12, 14, 16, 18, 20};
assertArraysAreEqual(t, Data(res), exp);
}
func TestSlice(t *testing.T) {
out := Data(Slice(elevenToTwenty, 2, 6));
exp := []int{13, 14, 15, 16};
assertArraysAreEqual(t, out, exp);
// entire iterable
out = Data(Slice(elevenToTwenty, 0, len(elevenToTwenty)));
exp = []int{11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
assertArraysAreEqual(t, out, exp);
// empty slice at offset 0
exp = []int{};
out = Data(Slice(elevenToTwenty, 0, 0));
assertArraysAreEqual(t, out, exp);
// slice upper bound exceeds length of iterable
exp = []int{1, 2, 3, 4, 5};
out = Data(Slice(oneToFive, 0, 88));
assertArraysAreEqual(t, out, exp);
// slice upper bounce is lower than lower bound
exp = []int{};
out = Data(Slice(oneToFive, 93, 4));
assertArraysAreEqual(t, out, exp);
// slice lower bound is greater than len of iterable
exp = []int{};
out = Data(Slice(oneToFive, 93, 108));
assertArraysAreEqual(t, out, exp);
}
func TestRepeat(t *testing.T) {
res := Repeat(42);
i := 0;
for v := range res.Iter() {
if v.(int) != 42 {
t.Fatal("Repeat returned the wrong value")
}
if i == 9 {
break
}
i++;
}
}
func TestRepeatTimes(t *testing.T) {
res := RepeatTimes(84, 9);
exp := []int{84, 84, 84, 84, 84, 84, 84, 84, 84};
assertArraysAreEqual(t, Data(res), exp);
assertArraysAreEqual(t, Data(res), exp); // second time to ensure new iter is returned
// 0 repeat
res = RepeatTimes(7, 0);
exp = []int{};
assertArraysAreEqual(t, Data(res), exp);
// negative repeat
res = RepeatTimes(7, -3);
exp = []int{};
assertArraysAreEqual(t, Data(res), exp);
}
// a type that implements Key for ints
type intkey struct{}
func (v intkey) Key(a interface{}) interface{} {
return a
}
func (v intkey) Equal(a, b interface{}) bool { return a.(int) == b.(int) }
func TestGroupBy(t *testing.T) {
in := IntArray{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
exp := [][]int{[]int{1}, []int{2, 2}, []int{3, 3, 3}, []int{4, 4, 4, 4}, []int{5, 5, 5, 5, 5}};
i := 0;
for x := range GroupBy(in, intkey{}).Iter() {
gr := x.(Group);
if gr.Key.(int) != i+1 {
t.Fatal("group key wrong; expected", i+1, "but got", gr.Key.(int))
}
vals := Data(gr.Vals);
assertArraysAreEqual(t, vals, exp[i]);
i++;
}
if i != 5 {
t.Fatal("did not return expected number of groups")
}
// test 0 length Iterable
for _ = range GroupBy(IntArray([]int{}), &intkey{}).Iter() {
t.Fatal("iterator should be empty")
}
// test case with only uniques
var out vector.Vector;
for x := range GroupBy(elevenToTwenty, intkey{}).Iter() {
out.Push(x.(Group).Key)
}
assertArraysAreEqual(t, out.Data(), elevenToTwenty);
}
func TestUnique(t *testing.T) {
in := IntArray([]int{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5});
exp := []int{1, 2, 3, 4, 5};
res := Unique(in, intkey{});
assertArraysAreEqual(t, Data(res), exp);
assertArraysAreEqual(t, Data(res), exp); // second time to ensure new iter is returned
// test case with only uniques
res = Unique(elevenToTwenty, intkey{});
assertArraysAreEqual(t, Data(res), elevenToTwenty);
}