1
0
mirror of https://github.com/golang/go synced 2024-11-26 07:38:00 -07:00

cmd/compile: fix various small bugs related to type lists

Fix various small bugs related to delaying transformations due to type
params. Most of these relate to the need to delay a transformation when
an argument of an expression or statement has a type parameter that has
a structural constraint. The structural constraint implies the operation
should work, but the transformation can't happen until the actual value
of the type parameter is known.

 - delay transformations for send statements and return statements if
   any args/values have type params.

 - similarly, delay transformation of a call where the function arg has
   type parameters. This is mainly important for the case where the
   function arg is a pure type parameter, but has a structural
   constraint that requires it to be a function. Move the setting of
   n.Use to transformCall(), since we may not know how many return
   values there are until then, if the function arg is a type parameter.

 - set the type of unary expressions from the type2 type (as we do with
   most other expressions), since that works better with expressions
   with type params.

 - deal with these delayed transformations in subster.node() and convert
   the CALL checks to a switch statement.

 - make sure ir.CurFunc is set properly during stenciling, including
   closures (needed for transforming return statements during
   stenciling).

New test file typelist.go with tests for these cases.

Change-Id: I1b82f949d8cec47d906429209e846f4ebc8ec85e
Reviewed-on: https://go-review.googlesource.com/c/go/+/305729
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Dan Scales 2021-03-29 08:28:01 -07:00
parent a95454b6f3
commit eeadfa2d38
6 changed files with 150 additions and 28 deletions

View File

@ -164,7 +164,7 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
case *syntax.Operation: case *syntax.Operation:
if expr.Y == nil { if expr.Y == nil {
return Unary(pos, g.op(expr.Op, unOps[:]), g.expr(expr.X)) return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
} }
switch op := g.op(expr.Op, binOps[:]); op { switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE: case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
@ -236,7 +236,7 @@ func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.Selecto
if havePtr != wantPtr { if havePtr != wantPtr {
if havePtr { if havePtr {
x = Implicit(Deref(pos, x)) x = Implicit(Deref(pos, x.Type().Elem(), x))
} else { } else {
x = Implicit(Addr(pos, x)) x = Implicit(Addr(pos, x))
} }

View File

@ -149,9 +149,13 @@ func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool)
} }
} }
n.Use = ir.CallUseExpr if fun.Type().HasTParam() {
if fun.Type().NumResults() == 0 { // If the fun arg is or has a type param, don't do any extra
n.Use = ir.CallUseStmt // transformations, since we may not have needed properties yet
// (e.g. number of return values, etc). The type param is probably
// described by a structural constraint that requires it to be a
// certain function type, etc., but we don't want to analyze that.
return typed(typ, n)
} }
if fun.Op() == ir.OXDOT { if fun.Op() == ir.OXDOT {
@ -191,9 +195,9 @@ func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
return n return n
} }
func Deref(pos src.XPos, x ir.Node) *ir.StarExpr { func Deref(pos src.XPos, typ *types.Type, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x) n := ir.NewStarExpr(pos, x)
typed(x.Type().Elem(), n) typed(typ, n)
return n return n
} }
@ -288,17 +292,22 @@ func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) ir.Node {
return n return n
} }
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node { func Unary(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node) ir.Node {
switch op { switch op {
case ir.OADDR: case ir.OADDR:
return Addr(pos, x) return Addr(pos, x)
case ir.ODEREF: case ir.ODEREF:
return Deref(pos, x) return Deref(pos, typ, x)
} }
typ := x.Type()
if op == ir.ORECV { if op == ir.ORECV {
typ = typ.Elem() if typ.IsFuncArgStruct() && typ.NumFields() == 2 {
// Remove the second boolean type (if provided by type2),
// since that works better with the rest of the compiler
// (which will add it back in later).
assert(typ.Field(1).Type.Kind() == types.TBOOL)
typ = typ.Field(0).Type
}
} }
return typed(typ, ir.NewUnaryExpr(pos, op, x)) return typed(typ, ir.NewUnaryExpr(pos, op, x))
} }

View File

@ -270,6 +270,7 @@ func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.No
newf.Nname.Func = newf newf.Nname.Func = newf
newf.Nname.Defn = newf newf.Nname.Defn = newf
newsym.Def = newf.Nname newsym.Def = newf.Nname
ir.CurFunc = newf
assert(len(tparams) == len(targs)) assert(len(tparams) == len(targs))
@ -286,7 +287,6 @@ func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.No
for i, n := range gf.Dcl { for i, n := range gf.Dcl {
newf.Dcl[i] = subst.node(n).(*ir.Name) newf.Dcl[i] = subst.node(n).(*ir.Name)
} }
newf.Body = subst.list(gf.Body)
// Ugly: we have to insert the Name nodes of the parameters/results into // Ugly: we have to insert the Name nodes of the parameters/results into
// the function type. The current function type has no Nname fields set, // the function type. The current function type has no Nname fields set,
@ -305,6 +305,11 @@ func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.No
newf.Nname.SetTypecheck(1) newf.Nname.SetTypecheck(1)
// TODO(danscales) - remove later, but avoid confusion for now. // TODO(danscales) - remove later, but avoid confusion for now.
newf.Pragma = ir.Noinline newf.Pragma = ir.Noinline
// Make sure name/type of newf is set before substituting the body.
newf.Body = subst.list(gf.Body)
ir.CurFunc = nil
return newf return newf
} }
@ -396,6 +401,12 @@ func (subst *subster) node(n ir.Node) ir.Node {
as := m.(*ir.AssignOpStmt) as := m.(*ir.AssignOpStmt)
transformCheckAssign(as, as.X) transformCheckAssign(as, as.X)
case ir.ORETURN:
transformReturn(m.(*ir.ReturnStmt))
case ir.OSEND:
transformSend(m.(*ir.SendStmt))
default: default:
base.Fatalf("Unexpected node with Typecheck() == 3") base.Fatalf("Unexpected node with Typecheck() == 3")
} }
@ -435,38 +446,55 @@ func (subst *subster) node(n ir.Node) ir.Node {
case ir.OCALL: case ir.OCALL:
call := m.(*ir.CallExpr) call := m.(*ir.CallExpr)
if call.X.Op() == ir.OTYPE { switch call.X.Op() {
case ir.OTYPE:
// Transform the conversion, now that we know the // Transform the conversion, now that we know the
// type argument. // type argument.
m = transformConvCall(m.(*ir.CallExpr)) m = transformConvCall(m.(*ir.CallExpr))
} else if call.X.Op() == ir.OCALLPART {
case ir.OCALLPART:
// Redo the transformation of OXDOT, now that we // Redo the transformation of OXDOT, now that we
// know the method value is being called. Then // know the method value is being called. Then
// transform the call. // transform the call.
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT) call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
transformDot(call.X.(*ir.SelectorExpr), true) transformDot(call.X.(*ir.SelectorExpr), true)
transformCall(call) transformCall(call)
} else if call.X.Op() == ir.ODOT || call.X.Op() == ir.ODOTPTR {
case ir.ODOT, ir.ODOTPTR:
// An OXDOT for a generic receiver was resolved to // An OXDOT for a generic receiver was resolved to
// an access to a field which has a function // an access to a field which has a function
// value. Transform the call to that function, now // value. Transform the call to that function, now
// that the OXDOT was resolved. // that the OXDOT was resolved.
transformCall(call) transformCall(call)
} else if name := call.X.Name(); name != nil {
switch name.BuiltinOp { case ir.ONAME:
case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND: name := call.X.Name()
// Transform these builtins now that we if name.BuiltinOp != ir.OXXX {
// know the type of the args. switch name.BuiltinOp {
m = transformBuiltin(call) case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
default: // Transform these builtins now that we
base.FatalfAt(call.Pos(), "Unexpected builtin op") // know the type of the args.
m = transformBuiltin(call)
default:
base.FatalfAt(call.Pos(), "Unexpected builtin op")
}
} else {
// This is the case of a function value that was a
// type parameter (implied to be a function via a
// structural constraint) which is now resolved.
transformCall(call)
} }
} else if call.X.Op() != ir.OFUNCINST { case ir.OCLOSURE:
// A call with an OFUNCINST will get typechecked transformCall(call)
case ir.OFUNCINST:
// A call with an OFUNCINST will get transformed
// in stencil() once we have created & attached the // in stencil() once we have created & attached the
// instantiation to be called. // instantiation to be called.
base.FatalfAt(call.Pos(), "Expecting OCALLPART or OTYPE or OFUNCINST or builtin with CALL")
default:
base.FatalfAt(call.Pos(), fmt.Sprintf("Unexpected op with CALL during stenciling: %v", call.X.Op()))
} }
case ir.OCLOSURE: case ir.OCLOSURE:
@ -491,17 +519,22 @@ func (subst *subster) node(n ir.Node) ir.Node {
newfn.OClosure = m.(*ir.ClosureExpr) newfn.OClosure = m.(*ir.ClosureExpr)
saveNewf := subst.newf saveNewf := subst.newf
ir.CurFunc = newfn
subst.newf = newfn subst.newf = newfn
newfn.Dcl = subst.namelist(oldfn.Dcl) newfn.Dcl = subst.namelist(oldfn.Dcl)
newfn.ClosureVars = subst.namelist(oldfn.ClosureVars) newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
newfn.Body = subst.list(oldfn.Body)
subst.newf = saveNewf
// Set Ntype for now to be compatible with later parts of compiler // Set Ntype for now to be compatible with later parts of compiler
newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype) newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype)
typed(subst.typ(oldfn.Nname.Type()), newfn.Nname) typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
typed(newfn.Nname.Type(), m) typed(newfn.Nname.Type(), m)
newfn.SetTypecheck(1) newfn.SetTypecheck(1)
// Make sure type of closure function is set before doing body.
newfn.Body = subst.list(oldfn.Body)
subst.newf = saveNewf
ir.CurFunc = saveNewf
subst.g.target.Decls = append(subst.g.target.Decls, newfn) subst.g.target.Decls = append(subst.g.target.Decls, newfn)
} }
return m return m

View File

@ -42,6 +42,12 @@ func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
return x return x
case *syntax.SendStmt: case *syntax.SendStmt:
n := ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value)) n := ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value))
if n.Chan.Type().HasTParam() || n.Value.Type().HasTParam() {
// Delay transforming the send if the channel or value
// have a type param.
n.SetTypecheck(3)
return n
}
transformSend(n) transformSend(n)
n.SetTypecheck(1) n.SetTypecheck(1)
return n return n
@ -118,6 +124,14 @@ func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call)) return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call))
case *syntax.ReturnStmt: case *syntax.ReturnStmt:
n := ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results)) n := ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results))
for _, e := range n.Results {
if e.Type().HasTParam() {
// Delay transforming the return statement if any of the
// return values have a type param.
n.SetTypecheck(3)
return n
}
}
transformReturn(n) transformReturn(n)
n.SetTypecheck(1) n.SetTypecheck(1)
return n return n

View File

@ -144,8 +144,10 @@ func transformCall(n *ir.CallExpr) {
typecheckaste(ir.OCALL, n.X, n.IsDDD, t.Params(), n.Args) typecheckaste(ir.OCALL, n.X, n.IsDDD, t.Params(), n.Args)
if t.NumResults() == 0 { if t.NumResults() == 0 {
n.Use = ir.CallUseStmt
return return
} }
n.Use = ir.CallUseExpr
if t.NumResults() == 1 { if t.NumResults() == 1 {
n.SetType(l.Type().Results().Field(0).Type) n.SetType(l.Type().Results().Field(0).Type)

View File

@ -0,0 +1,64 @@
// compile -G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file tests type lists & structural constraints.
package p
// Assignability of an unnamed pointer type to a type parameter that
// has a matching underlying type.
func _[T interface{}, PT interface{type *T}] (x T) PT {
return &x
}
// Indexing of generic types containing type parameters in their type list:
func at[T interface{ type []E }, E any](x T, i int) E {
return x[i]
}
// A generic type inside a function acts like a named type. Its underlying
// type is itself, its "operational type" is defined by the type list in
// the tybe bound, if any.
func _[T interface{type int}](x T) {
type myint int
var _ int = int(x)
var _ T = 42
var _ T = T(myint(42))
}
// Indexing a generic type which has a structural contraints to be an array.
func _[T interface { type [10]int }](x T) {
_ = x[9] // ok
}
// Dereference of a generic type which has a structural contraint to be a pointer.
func _[T interface{ type *int }](p T) int {
return *p
}
// Channel send and receive on a generic type which has a structural constraint to
// be a channel.
func _[T interface{ type chan int }](ch T) int {
// This would deadlock if executed (but ok for a compile test)
ch <- 0
return <- ch
}
// Calling of a generic type which has a structural constraint to be a function.
func _[T interface{ type func() }](f T) {
f()
go f()
}
// Same, but function has a parameter and return value.
func _[T interface{ type func(string) int }](f T) int {
return f("hello")
}
// Map access of a generic type which has a structural constraint to be a map.
func _[V any, T interface { type map[string]V }](p T) V {
return p["test"]
}