1
0
mirror of https://github.com/golang/go synced 2024-11-11 23:10:23 -07:00

[dev.typeparams] Fix issues related to dictionaries and method calls with embedded fields

- Fix handling of method expressions with embedded fields. Fix an
   incorrect lookup for method expressions, which have only the
   top-level type (and don't have DOT operations for the embedded
   fields). Add the embedded field dot operations into the closure.

 - Don't need a dictionary and so don't build a closure if the last
   embedded field reached in a method expression is an interface value.

 - Fix methodWrapper() to use the computed 'dot' node in the
   generic-only part of the code.

 - For a method expression, don't create a generic wrapper if the last
   embedded field reached before the method lookup is an interface.

Copied cmd/compile/internal/types2/testdata/fixedbugs/issue44688.go2 to
test/typeparam/issue44688.go, made it fully runnable (rather than just
for compilation), and added a bunch more tests.

Change-Id: I90c1aa569e1c7272e986c9d2ae683e553c3a38a1
Reviewed-on: https://go-review.googlesource.com/c/go/+/329550
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
This commit is contained in:
Dan Scales 2021-06-18 14:09:21 -07:00
parent 8165256bc2
commit ee4fc0c1bc
3 changed files with 184 additions and 9 deletions

View File

@ -76,8 +76,10 @@ func (g *irgen) stencil() {
// generic F, not immediately called
closureRequired = true
}
if n.Op() == ir.OMETHEXPR && len(n.(*ir.SelectorExpr).X.Type().RParams()) > 0 {
// T.M, T a type which is generic, not immediately called
if n.Op() == ir.OMETHEXPR && len(n.(*ir.SelectorExpr).X.Type().RParams()) > 0 && !types.IsInterfaceMethod(n.(*ir.SelectorExpr).Selection.Type) {
// T.M, T a type which is generic, not immediately
// called. Not necessary if the method selected is
// actually for an embedded interface field.
closureRequired = true
}
if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
@ -156,7 +158,8 @@ func (g *irgen) stencil() {
// TODO: only set outer!=nil if this instantiation uses
// a type parameter from outer. See comment in buildClosure.
return g.buildClosure(outer, x)
case x.Op() == ir.OMETHEXPR && len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0: // TODO: test for ptr-to-method case
case x.Op() == ir.OMETHEXPR && len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0 &&
!types.IsInterfaceMethod(x.(*ir.SelectorExpr).Selection.Type): // TODO: test for ptr-to-method case
return g.buildClosure(outer, x)
}
return x
@ -230,9 +233,14 @@ func (g *irgen) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
}
}
}
t := se.X.Type()
baseSym := t.OrigSym
baseType := baseSym.Def.(*ir.Name).Type()
// se.X.Type() is the top-level type of the method expression. To
// correctly handle method expressions involving embedded fields,
// look up the generic method below using the type of the receiver
// of se.Selection, since that will be the type that actually has
// the method.
recv := deref(se.Selection.Type.Recv().Type)
baseType := recv.OrigSym.Def.Type()
var gf *ir.Name
for _, m := range baseType.Methods().Slice() {
if se.Sel == m.Sym {
@ -382,7 +390,15 @@ func (g *irgen) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
}
// Then all the other arguments (including receiver for method expressions).
for i := 0; i < typ.NumParams(); i++ {
args = append(args, formalParams[i].Nname.(*ir.Name))
if x.Op() == ir.OMETHEXPR && i == 0 {
// If we are doing a method expression, we need to
// explicitly traverse any embedded fields in the receiver
// argument in order to call the method instantiation.
dot := typecheck.AddImplicitDots(ir.NewSelectorExpr(base.Pos, ir.OXDOT, formalParams[0].Nname.(*ir.Name), x.(*ir.SelectorExpr).Sel))
args = append(args, dot.X)
} else {
args = append(args, formalParams[i].Nname.(*ir.Name))
}
}
// Build call itself.

View File

@ -1786,6 +1786,11 @@ func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSy
}
dot := typecheck.AddImplicitDots(ir.NewSelectorExpr(base.Pos, ir.OXDOT, nthis, method.Sym))
if generic && dot.X != nthis && dot.X.Type().IsInterface() {
// We followed some embedded fields, and the last type was
// actually an interface, so no need for a dictionary.
generic = false
}
// generate call
// It's not possible to use a tail call when dynamic linking on ppc64le. The
@ -1824,9 +1829,13 @@ func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSy
}
args = append(args, getDictionary(".inst."+ir.MethodSym(orig, method.Sym).Name, targs)) // TODO: remove .inst.
if indirect {
args = append(args, ir.NewStarExpr(base.Pos, nthis))
args = append(args, ir.NewStarExpr(base.Pos, dot.X))
} else if methodrcvr.IsPtr() && methodrcvr.Elem() == dot.X.Type() {
// Case where method call is via a non-pointer
// embedded field with a pointer method.
args = append(args, typecheck.NodAddrAt(base.Pos, dot.X))
} else {
args = append(args, nthis)
args = append(args, dot.X)
}
args = append(args, ir.ParamNames(tfn.Type())...)

View File

@ -0,0 +1,150 @@
// run -gcflags=-G=3
//go:build goexperiment.unified
// +build !goexperiment.unified
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// derived & expanded from cmd/compile/internal/types2/testdata/fixedbugs/issue44688.go2
package main
type A1[T any] struct{
val T
}
func (p *A1[T]) m1(val T) {
p.val = val
}
type A2[T any] interface {
m2(T)
}
type B1[T any] struct {
filler int
*A1[T]
A2[T]
}
type B2[T any] interface {
A2[T]
}
type ImpA2[T any] struct {
f T
}
func (a2 *ImpA2[T]) m2(s T) {
a2.f = s
}
type C[T any] struct {
filler1 int
filler2 int
B1[T]
}
type D[T any] struct {
filler1 int
filler2 int
filler3 int
C[T]
}
func test1[T any](arg T) {
// calling embedded methods
var b1 B1[T]
b1.A1 = &A1[T]{}
b1.A2 = &ImpA2[T]{}
b1.A1.m1(arg)
b1.m1(arg)
b1.A2.m2(arg)
b1.m2(arg)
var b2 B2[T]
b2 = &ImpA2[T]{}
b2.m2(arg)
// a deeper nesting
var d D[T]
d.C.B1.A1 = &A1[T]{}
d.C.B1.A2 = &ImpA2[T]{}
d.m1(arg)
d.m2(arg)
// calling method expressions
m1x := B1[T].m1
m1x(b1, arg)
m2x := B2[T].m2
m2x(b2, arg)
// calling method values
m1v := b1.m1
m1v(arg)
m2v := b1.m2
m2v(arg)
b2v := b2.m2
b2v(arg)
}
func test2() {
// calling embedded methods
var b1 B1[string]
b1.A1 = &A1[string]{}
b1.A2 = &ImpA2[string]{}
b1.A1.m1("")
b1.m1("")
b1.A2.m2("")
b1.m2("")
var b2 B2[string]
b2 = &ImpA2[string]{}
b2.m2("")
// a deeper nesting
var d D[string]
d.C.B1.A1 = &A1[string]{}
d.C.B1.A2 = &ImpA2[string]{}
d.m1("")
d.m2("")
// calling method expressions
m1x := B1[string].m1
m1x(b1, "")
m2x := B2[string].m2
m2x(b2, "")
// calling method values
m1v := b1.m1
m1v("")
m2v := b1.m2
m2v("")
b2v := b2.m2
b2v("")
}
// actual test case from issue
type A[T any] struct{}
func (*A[T]) f(T) {}
type B[T any] struct{ A[T] }
func test3() {
var b B[string]
b.A.f("")
b.f("")
}
func main() {
test1[string]("")
test2()
test3()
}