1
0
mirror of https://github.com/golang/go synced 2024-11-18 21:05:02 -07:00

cmd/compile: cleanup closure.go

The main thing is we now eagerly create the ODCLFUNC node for
closures, immediately cross-link them, and assign fields (e.g., Nbody,
Dcl, Parents, Marks) directly on the ODCLFUNC (previously they were
assigned on the OCLOSURE and later moved to the ODCLFUNC).

This allows us to set Curfn to the ODCLFUNC instead of the OCLOSURE,
which makes things more consistent with normal function declarations.
(Notably, this means Cvars now hang off the ODCLFUNC instead of the
OCLOSURE.)

Assignment of xfunc symbol names also now happens before typechecking
their body, which means debugging output now provides a more helpful
name than "<S>".

In golang.org/cl/66810, we changed "x := y" statements to avoid
creating false closure variables for x, but we still create them for
struct literals like "s{f: x}". Update comment in capturevars
accordingly.

More opportunity for cleanups still, but this makes some substantial
progress, IMO.

Passes toolstash-check.

Change-Id: I65a4efc91886e3dcd1000561348af88297775cd7
Reviewed-on: https://go-review.googlesource.com/100197
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Matthew Dempsky 2018-03-08 06:25:04 -08:00
parent 644d14ea0f
commit eb3c44b2c4
6 changed files with 119 additions and 221 deletions

View File

@ -11,61 +11,39 @@ import (
)
func (p *noder) funcLit(expr *syntax.FuncLit) *Node {
xtype := p.typeExpr(expr.Type)
ntype := p.typeExpr(expr.Type)
n := p.nod(expr, OCLOSURE, nil, nil)
n.Func.SetIsHiddenClosure(Curfn != nil)
n.Func.Ntype = ntype
n.Func.Outerfunc = Curfn
xfunc := p.nod(expr, ODCLFUNC, nil, nil)
xfunc.Func.SetIsHiddenClosure(Curfn != nil)
xfunc.Func.Nname = newfuncname(nblank.Sym) // filled in by typecheckclosure
xfunc.Func.Nname.Name.Param.Ntype = xtype
xfunc.Func.Nname.Name.Defn = xfunc
old := p.funchdr(n)
clo := p.nod(expr, OCLOSURE, nil, nil)
clo.Func.Ntype = ntype
// steal ntype's argument names and
// leave a fresh copy in their place.
// references to these variables need to
// refer to the variables in the external
// function declared below; see walkclosure.
n.List.Set(ntype.List.Slice())
n.Rlist.Set(ntype.Rlist.Slice())
xfunc.Func.Closure = clo
clo.Func.Closure = xfunc
ntype.List.Set(nil)
ntype.Rlist.Set(nil)
for _, n1 := range n.List.Slice() {
name := n1.Left
if name != nil {
name = newname(name.Sym)
}
a := nod(ODCLFIELD, name, n1.Right)
a.SetIsddd(n1.Isddd())
if name != nil {
name.SetIsddd(a.Isddd())
}
ntype.List.Append(a)
}
for _, n2 := range n.Rlist.Slice() {
name := n2.Left
if name != nil {
name = newname(name.Sym)
}
ntype.Rlist.Append(nod(ODCLFIELD, name, n2.Right))
}
oldScope := p.funchdr(xfunc)
body := p.stmts(expr.Body.List)
lineno = p.makeXPos(expr.Body.Rbrace)
if len(body) == 0 {
if body == nil {
body = []*Node{nod(OEMPTY, nil, nil)}
}
xfunc.Nbody.Set(body)
n.Nbody.Set(body)
n.Func.Endlineno = lineno
p.funcbody(old)
lineno = p.makeXPos(expr.Body.Rbrace)
xfunc.Func.Endlineno = lineno
p.funcbody(oldScope)
// closure-specific variables are hanging off the
// ordinary ones in the symbol table; see oldname.
// unhook them.
// make the list of pointers for the closure call.
for _, v := range n.Func.Cvars.Slice() {
for _, v := range xfunc.Func.Cvars.Slice() {
// Unlink from v1; see comment in syntax.go type Param for these fields.
v1 := v.Name.Defn
v1.Name.Param.Innermost = v.Name.Param.Outer
@ -101,11 +79,13 @@ func (p *noder) funcLit(expr *syntax.FuncLit) *Node {
v.Name.Param.Outer = oldname(v.Sym)
}
return n
return clo
}
func typecheckclosure(func_ *Node, top int) {
for _, ln := range func_.Func.Cvars.Slice() {
func typecheckclosure(clo *Node, top int) {
xfunc := clo.Func.Closure
for _, ln := range xfunc.Func.Cvars.Slice() {
n := ln.Name.Defn
if !n.Name.Captured() {
n.Name.SetCaptured(true)
@ -121,129 +101,59 @@ func typecheckclosure(func_ *Node, top int) {
}
}
for _, ln := range func_.Func.Dcl {
if ln.Op == ONAME && (ln.Class() == PPARAM || ln.Class() == PPARAMOUT) {
ln.Name.Decldepth = 1
}
}
xfunc.Func.Nname.Sym = closurename(Curfn)
xfunc.Func.Nname.Sym.SetExported(true) // disable export
declare(xfunc.Func.Nname, PFUNC)
xfunc = typecheck(xfunc, Etop)
oldfn := Curfn
func_.Func.Ntype = typecheck(func_.Func.Ntype, Etype)
func_.Type = func_.Func.Ntype.Type
func_.Func.Top = top
clo.Func.Ntype = typecheck(clo.Func.Ntype, Etype)
clo.Type = clo.Func.Ntype.Type
clo.Func.Top = top
// Type check the body now, but only if we're inside a function.
// At top level (in a variable initialization: curfn==nil) we're not
// ready to type check code yet; we'll check it later, because the
// underlying closure function we create is added to xtop.
if Curfn != nil && func_.Type != nil {
Curfn = func_
if Curfn != nil && clo.Type != nil {
oldfn := Curfn
Curfn = xfunc
olddd := decldepth
decldepth = 1
typecheckslice(func_.Nbody.Slice(), Etop)
typecheckslice(xfunc.Nbody.Slice(), Etop)
decldepth = olddd
Curfn = oldfn
}
// Create top-level function
xtop = append(xtop, makeclosure(func_))
xtop = append(xtop, xfunc)
}
// closurename returns name for OCLOSURE n.
// It is not as simple as it ought to be, because we typecheck nested closures
// starting from the innermost one. So when we check the inner closure,
// we don't yet have name for the outer closure. This function uses recursion
// to generate names all the way up if necessary.
// globClosgen is like Func.Closgen, but for the global scope.
var globClosgen int
var closurename_closgen int
// closurename generates a new unique name for a closure within
// outerfunc.
func closurename(outerfunc *Node) *types.Sym {
outer := "glob."
prefix := "func"
gen := &globClosgen
func closurename(n *Node) *types.Sym {
if n.Sym != nil {
return n.Sym
}
gen := 0
outer := ""
prefix := ""
switch {
case n.Func.Outerfunc == nil:
// Global closure.
outer = "glob."
prefix = "func"
closurename_closgen++
gen = closurename_closgen
case n.Func.Outerfunc.Op == ODCLFUNC:
// The outermost closure inside of a named function.
outer = n.Func.Outerfunc.funcname()
prefix = "func"
// Yes, functions can be named _.
// Can't use function closgen in such case,
// because it would lead to name clashes.
if !isblank(n.Func.Outerfunc.Func.Nname) {
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
} else {
closurename_closgen++
gen = closurename_closgen
if outerfunc != nil {
if outerfunc.Func.Closure != nil {
prefix = ""
}
case n.Func.Outerfunc.Op == OCLOSURE:
// Nested closure, recurse.
outer = closurename(n.Func.Outerfunc).Name
prefix = ""
n.Func.Outerfunc.Func.Closgen++
gen = n.Func.Outerfunc.Func.Closgen
default:
Fatalf("closurename called for %S", n)
}
n.Sym = lookup(fmt.Sprintf("%s.%s%d", outer, prefix, gen))
return n.Sym
}
outer = outerfunc.funcname()
func makeclosure(func_ *Node) *Node {
// wrap body in external function
// that begins by reading closure parameters.
xtype := nod(OTFUNC, nil, nil)
xtype.List.Set(func_.List.Slice())
xtype.Rlist.Set(func_.Rlist.Slice())
// create the function
xfunc := nod(ODCLFUNC, nil, nil)
xfunc.Func.SetIsHiddenClosure(Curfn != nil)
xfunc.Func.Nname = newfuncname(closurename(func_))
xfunc.Func.Nname.Sym.SetExported(true) // disable export
xfunc.Func.Nname.Name.Param.Ntype = xtype
xfunc.Func.Nname.Name.Defn = xfunc
declare(xfunc.Func.Nname, PFUNC)
xfunc.Func.Endlineno = func_.Func.Endlineno
if Ctxt.Flag_dynlink {
makefuncsym(xfunc.Func.Nname.Sym)
// There may be multiple functions named "_". In those
// cases, we can't use their individual Closgens as it
// would lead to name clashes.
if !isblank(outerfunc.Func.Nname) {
gen = &outerfunc.Func.Closgen
}
}
xfunc.Nbody.Set(func_.Nbody.Slice())
xfunc.Func.Dcl = append(func_.Func.Dcl, xfunc.Func.Dcl...)
xfunc.Func.Parents = func_.Func.Parents
xfunc.Func.Marks = func_.Func.Marks
func_.Func.Dcl = nil
func_.Func.Parents = nil
func_.Func.Marks = nil
if xfunc.Nbody.Len() == 0 {
Fatalf("empty body - won't generate any code")
}
xfunc = typecheck(xfunc, Etop)
xfunc.Func.Closure = func_
func_.Func.Closure = xfunc
func_.Nbody.Set(nil)
func_.List.Set(nil)
func_.Rlist.Set(nil)
return xfunc
*gen++
return lookup(fmt.Sprintf("%s.%s%d", outer, prefix, *gen))
}
// capturevarscomplete is set to true when the capturevars phase is done.
@ -258,20 +168,20 @@ func capturevars(xfunc *Node) {
lno := lineno
lineno = xfunc.Pos
func_ := xfunc.Func.Closure
func_.Func.Enter.Set(nil)
for _, v := range func_.Func.Cvars.Slice() {
clo := xfunc.Func.Closure
cvars := xfunc.Func.Cvars.Slice()
out := cvars[:0]
for _, v := range cvars {
if v.Type == nil {
// if v->type is nil, it means v looked like it was
// going to be used in the closure but wasn't.
// this happens because when parsing a, b, c := f()
// the a, b, c gets parsed as references to older
// a, b, c before the parser figures out this is a
// declaration.
v.Op = OXXX
// If v.Type is nil, it means v looked like it
// was going to be used in the closure, but
// isn't. This happens in struct literals like
// s{f: x} where we can't distinguish whether
// f is a field identifier or expression until
// resolving s.
continue
}
out = append(out, v)
// type check the & of closed variables outside the closure,
// so that the outer frame also grabs them and knows they escape.
@ -301,9 +211,10 @@ func capturevars(xfunc *Node) {
}
outer = typecheck(outer, Erv)
func_.Func.Enter.Append(outer)
clo.Func.Enter.Append(outer)
}
xfunc.Func.Cvars.Set(out)
lineno = lno
}
@ -312,9 +223,9 @@ func capturevars(xfunc *Node) {
func transformclosure(xfunc *Node) {
lno := lineno
lineno = xfunc.Pos
func_ := xfunc.Func.Closure
clo := xfunc.Func.Closure
if func_.Func.Top&Ecall != 0 {
if clo.Func.Top&Ecall != 0 {
// If the closure is directly called, we transform it to a plain function call
// with variables passed as args. This avoids allocation of a closure object.
// Here we do only a part of the transformation. Walk of OCALLFUNC(OCLOSURE)
@ -336,33 +247,27 @@ func transformclosure(xfunc *Node) {
// We are going to insert captured variables before input args.
var params []*types.Field
var decls []*Node
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
fld := types.NewField()
fld.Funarg = types.FunargParams
if v.Name.Byval() {
// If v is captured by value, we merely downgrade it to PPARAM.
v.SetClass(PPARAM)
fld.Nname = asTypesNode(v)
} else {
for _, v := range xfunc.Func.Cvars.Slice() {
if !v.Name.Byval() {
// If v of type T is captured by reference,
// we introduce function param &v *T
// and v remains PAUTOHEAP with &v heapaddr
// (accesses will implicitly deref &v).
addr := newname(lookup("&" + v.Sym.Name))
addr.Type = types.NewPtr(v.Type)
addr.SetClass(PPARAM)
v.Name.Param.Heapaddr = addr
fld.Nname = asTypesNode(addr)
v = addr
}
fld.Type = asNode(fld.Nname).Type
fld.Sym = asNode(fld.Nname).Sym
v.SetClass(PPARAM)
decls = append(decls, v)
fld := types.NewField()
fld.Funarg = types.FunargParams
fld.Nname = asTypesNode(v)
fld.Type = v.Type
fld.Sym = v.Sym
params = append(params, fld)
decls = append(decls, asNode(fld.Nname))
}
if len(params) > 0 {
@ -377,11 +282,7 @@ func transformclosure(xfunc *Node) {
// The closure is not called, so it is going to stay as closure.
var body []*Node
offset := int64(Widthptr)
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
for _, v := range xfunc.Func.Cvars.Slice() {
// cv refers to the field inside of closure OSTRUCTLIT.
cv := nod(OCLOSUREVAR, nil, nil)
@ -425,42 +326,40 @@ func transformclosure(xfunc *Node) {
lineno = lno
}
// hasemptycvars returns true iff closure func_ has an
// empty list of captured vars. OXXX nodes don't count.
func hasemptycvars(func_ *Node) bool {
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
return false
}
return true
// hasemptycvars returns true iff closure clo has an
// empty list of captured vars.
func hasemptycvars(clo *Node) bool {
xfunc := clo.Func.Closure
return xfunc.Func.Cvars.Len() == 0
}
// closuredebugruntimecheck applies boilerplate checks for debug flags
// and compiling runtime
func closuredebugruntimecheck(r *Node) {
func closuredebugruntimecheck(clo *Node) {
if Debug_closure > 0 {
if r.Esc == EscHeap {
Warnl(r.Pos, "heap closure, captured vars = %v", r.Func.Cvars)
xfunc := clo.Func.Closure
if clo.Esc == EscHeap {
Warnl(clo.Pos, "heap closure, captured vars = %v", xfunc.Func.Cvars)
} else {
Warnl(r.Pos, "stack closure, captured vars = %v", r.Func.Cvars)
Warnl(clo.Pos, "stack closure, captured vars = %v", xfunc.Func.Cvars)
}
}
if compiling_runtime && r.Esc == EscHeap {
yyerrorl(r.Pos, "heap-allocated closure, not allowed in runtime.")
if compiling_runtime && clo.Esc == EscHeap {
yyerrorl(clo.Pos, "heap-allocated closure, not allowed in runtime.")
}
}
func walkclosure(func_ *Node, init *Nodes) *Node {
func walkclosure(clo *Node, init *Nodes) *Node {
xfunc := clo.Func.Closure
// If no closure vars, don't bother wrapping.
if hasemptycvars(func_) {
if hasemptycvars(clo) {
if Debug_closure > 0 {
Warnl(func_.Pos, "closure converted to global")
Warnl(clo.Pos, "closure converted to global")
}
return func_.Func.Closure.Func.Nname
return xfunc.Func.Nname
}
closuredebugruntimecheck(func_)
closuredebugruntimecheck(clo)
// Create closure in the form of a composite literal.
// supposing the closure captures an int i and a string s
@ -479,10 +378,7 @@ func walkclosure(func_ *Node, init *Nodes) *Node {
fields := []*Node{
namedfield(".F", types.Types[TUINTPTR]),
}
for _, v := range func_.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}
for _, v := range xfunc.Func.Cvars.Slice() {
typ := v.Type
if !v.Name.Byval() {
typ = types.NewPtr(typ)
@ -493,27 +389,27 @@ func walkclosure(func_ *Node, init *Nodes) *Node {
typ.SetNoalg(true)
clos := nod(OCOMPLIT, nil, nod(OIND, typenod(typ), nil))
clos.Esc = func_.Esc
clos.Esc = clo.Esc
clos.Right.SetImplicit(true)
clos.List.Set(append([]*Node{nod(OCFUNC, func_.Func.Closure.Func.Nname, nil)}, func_.Func.Enter.Slice()...))
clos.List.Set(append([]*Node{nod(OCFUNC, xfunc.Func.Nname, nil)}, clo.Func.Enter.Slice()...))
// Force type conversion from *struct to the func type.
clos = nod(OCONVNOP, clos, nil)
clos.Type = func_.Type
clos.Type = clo.Type
clos = typecheck(clos, Erv)
// typecheck will insert a PTRLIT node under CONVNOP,
// tag it with escape analysis result.
clos.Left.Esc = func_.Esc
clos.Left.Esc = clo.Esc
// non-escaping temp to use, if any.
// orderexpr did not compute the type; fill it in now.
if x := prealloc[func_]; x != nil {
if x := prealloc[clo]; x != nil {
x.Type = clos.Left.Left.Type
x.Orig.Type = x.Type
clos.Left.Right = x
delete(prealloc, func_)
delete(prealloc, clo)
}
return walkexpr(clos, init)
@ -619,12 +515,11 @@ func makepartialcall(fn *Node, t0 *types.Type, meth *types.Sym) *Node {
// Declare and initialize variable holding receiver.
xfunc.Func.SetNeedctxt(true)
cv := nod(OCLOSUREVAR, nil, nil)
cv.Xoffset = int64(Widthptr)
cv.Type = rcvrtype
if int(cv.Type.Align) > Widthptr {
cv.Xoffset = int64(cv.Type.Align)
}
cv.Xoffset = Rnd(int64(Widthptr), int64(cv.Type.Align))
ptr := newname(lookup("rcvr"))
ptr.SetClass(PAUTO)
ptr.Name.SetUsed(true)

View File

@ -948,7 +948,7 @@ func (e *EscState) esc(n *Node, parent *Node) {
case OCLOSURE:
// Link addresses of captured variables to closure.
for _, v := range n.Func.Cvars.Slice() {
for _, v := range n.Func.Closure.Func.Cvars.Slice() {
if v.Op == OXXX { // unnamed out argument; see dcl.go:/^funcargs
continue
}

View File

@ -816,7 +816,7 @@ func mkinlcall1(n, fn *Node) *Node {
// handle captured variables when inlining closures
if c := fn.Name.Defn.Func.Closure; c != nil {
for _, v := range c.Func.Cvars.Slice() {
for _, v := range c.Func.Closure.Func.Cvars.Slice() {
if v.Op == OXXX {
continue
}

View File

@ -1124,7 +1124,7 @@ func (o *Order) expr(n, lhs *Node) *Node {
}
case OCLOSURE:
if n.Noescape() && n.Func.Cvars.Len() > 0 {
if n.Noescape() && n.Func.Closure.Func.Cvars.Len() > 0 {
prealloc[n] = o.newTemp(types.Types[TUINT8], false) // walk will fill in correct type
}

View File

@ -22,7 +22,7 @@ func TestSizeof(t *testing.T) {
_32bit uintptr // size on 32bit platforms
_64bit uintptr // size on 64bit platforms
}{
{Func{}, 128, 232},
{Func{}, 124, 224},
{Name{}, 32, 56},
{Param{}, 24, 48},
{Node{}, 76, 128},

View File

@ -471,8 +471,11 @@ type Func struct {
// Marks records scope boundary changes.
Marks []Mark
Closgen int
Outerfunc *Node // outer function (for closure)
// Closgen tracks how many closures have been generated within
// this function. Used by closurename for creating unique
// function names.
Closgen int
FieldTrack map[*types.Sym]struct{}
DebugInfo *ssa.FuncDebug
Ntype *Node // signature