mirror of
https://github.com/golang/go
synced 2024-11-12 07:00:21 -07:00
math/big: accept non-decimal floats with Rat.SetString
This fixes an old oversight. Rat.SetString already permitted fractions a/b where both a and b could independently specify a base prefix. With this CL, it now also accepts non-decimal floating-point numbers. Fixes #29799. Change-Id: I9cc65666a5cebb00f0202da2e4fc5654a02e3234 Reviewed-on: https://go-review.googlesource.com/c/go/+/168237 Reviewed-by: Emmanuel Odeke <emm.odeke@gmail.com>
This commit is contained in:
parent
a591fd08dd
commit
e4ba40030f
@ -70,8 +70,8 @@ func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
|
||||
}
|
||||
// len(z.mant) > 0
|
||||
|
||||
// The mantissa may have a decimal point (fcount <= 0) and there
|
||||
// may be a nonzero exponent exp. The decimal point amounts to a
|
||||
// The mantissa may have a radix point (fcount <= 0) and there
|
||||
// may be a nonzero exponent exp. The radix point amounts to a
|
||||
// division by b**(-fcount). An exponent means multiplication by
|
||||
// ebase**exp. Finally, mantissa normalization (shift left) requires
|
||||
// a correcting multiplication by 2**(-shiftcount). Multiplications
|
||||
@ -85,11 +85,11 @@ func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
|
||||
exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
|
||||
exp5 := int64(0)
|
||||
|
||||
// determine binary or decimal exponent contribution of decimal point
|
||||
// determine binary or decimal exponent contribution of radix point
|
||||
if fcount < 0 {
|
||||
// The mantissa has a "decimal" point ddd.dddd; and
|
||||
// -fcount is the number of digits to the right of '.'.
|
||||
// Adjust relevant exponent accordingly.
|
||||
// The mantissa has a radix point ddd.dddd; and
|
||||
// -fcount is the number of digits to the right
|
||||
// of '.'. Adjust relevant exponent accordingly.
|
||||
d := int64(fcount)
|
||||
switch b {
|
||||
case 10:
|
||||
@ -111,7 +111,7 @@ func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
|
||||
switch ebase {
|
||||
case 10:
|
||||
exp5 += exp
|
||||
fallthrough
|
||||
fallthrough // see fallthrough above
|
||||
case 2:
|
||||
exp2 += exp
|
||||
default:
|
||||
|
@ -35,9 +35,10 @@ import (
|
||||
type nat []Word
|
||||
|
||||
var (
|
||||
natOne = nat{1}
|
||||
natTwo = nat{2}
|
||||
natTen = nat{10}
|
||||
natOne = nat{1}
|
||||
natTwo = nat{2}
|
||||
natFive = nat{5}
|
||||
natTen = nat{10}
|
||||
)
|
||||
|
||||
func (z nat) clear() {
|
||||
|
@ -38,10 +38,22 @@ func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
|
||||
}
|
||||
|
||||
// SetString sets z to the value of s and returns z and a boolean indicating
|
||||
// success. s can be given as a fraction "a/b" or as a decimal floating-point
|
||||
// number optionally followed by an exponent. The entire string (not just a prefix)
|
||||
// must be valid for success. If the operation failed, the value of z is
|
||||
// undefined but the returned value is nil.
|
||||
// success. s can be given as a (possibly signed) fraction "a/b", or as a
|
||||
// floating-point number optionally followed by an exponent.
|
||||
// If a fraction is provided, both the dividend and the divisor may be a
|
||||
// decimal integer or independently use a prefix of ``0b'', ``0'' or ``0o'',
|
||||
// or ``0x'' (or their upper-case variants) to denote a binary, octal, or
|
||||
// hexadecimal integer, respectively. The divisor may not be signed.
|
||||
// If a floating-point number is provided, it may be in decimal form or
|
||||
// use any of the same prefixes as above but for ``0'' to denote a non-decimal
|
||||
// mantissa. A leading ``0'' is considered a decimal leading 0; it does not
|
||||
// indicate octal representation in this case.
|
||||
// An optional base-10 ``e'' or base-2 ``p'' (or their upper-case variants)
|
||||
// exponent may be provided as well, except for hexadecimal floats which
|
||||
// only accept an (optional) ``p'' exponent (because an ``e'' or ``E'' cannot
|
||||
// be distinguished from a mantissa digit).
|
||||
// The entire string, not just a prefix, must be valid for success. If the
|
||||
// operation failed, the value of z is undefined but the returned value is nil.
|
||||
func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
if len(s) == 0 {
|
||||
return nil, false
|
||||
@ -78,16 +90,17 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
}
|
||||
|
||||
// mantissa
|
||||
// TODO(gri) allow other bases besides 10 for mantissa and exponent? (issue #29799)
|
||||
var ecorr int
|
||||
z.a.abs, _, ecorr, err = z.a.abs.scan(r, 10, true)
|
||||
var base int
|
||||
var fcount int // fractional digit count; valid if <= 0
|
||||
z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
|
||||
if err != nil {
|
||||
return nil, false
|
||||
}
|
||||
|
||||
// exponent
|
||||
var exp int64
|
||||
exp, _, err = scanExponent(r, false, false)
|
||||
var ebase int
|
||||
exp, ebase, err = scanExponent(r, true, true)
|
||||
if err != nil {
|
||||
return nil, false
|
||||
}
|
||||
@ -103,30 +116,91 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
}
|
||||
// len(z.a.abs) > 0
|
||||
|
||||
// correct exponent
|
||||
if ecorr < 0 {
|
||||
exp += int64(ecorr)
|
||||
// The mantissa may have a radix point (fcount <= 0) and there
|
||||
// may be a nonzero exponent exp. The radix point amounts to a
|
||||
// division by base**(-fcount), which equals a multiplication by
|
||||
// base**fcount. An exponent means multiplication by ebase**exp.
|
||||
// Multiplications are commutative, so we can apply them in any
|
||||
// order. We only have powers of 2 and 10, and we split powers
|
||||
// of 10 into the product of the same powers of 2 and 5. This
|
||||
// may reduce the the size of shift/multiplication factors or
|
||||
// divisors required to create the final fraction, depending
|
||||
// on the actual floating-point value.
|
||||
|
||||
// determine binary or decimal exponent contribution of radix point
|
||||
var exp2, exp5 int64
|
||||
if fcount < 0 {
|
||||
// The mantissa has a radix point ddd.dddd; and
|
||||
// -fcount is the number of digits to the right
|
||||
// of '.'. Adjust relevant exponent accordingly.
|
||||
d := int64(fcount)
|
||||
switch base {
|
||||
case 10:
|
||||
exp5 = d
|
||||
fallthrough // 10**e == 5**e * 2**e
|
||||
case 2:
|
||||
exp2 = d
|
||||
case 8:
|
||||
exp2 = d * 3 // octal digits are 3 bits each
|
||||
case 16:
|
||||
exp2 = d * 4 // hexadecimal digits are 4 bits each
|
||||
default:
|
||||
panic("unexpected mantissa base")
|
||||
}
|
||||
// fcount consumed - not needed anymore
|
||||
}
|
||||
|
||||
// compute exponent power
|
||||
expabs := exp
|
||||
if expabs < 0 {
|
||||
expabs = -expabs
|
||||
// take actual exponent into account
|
||||
switch ebase {
|
||||
case 10:
|
||||
exp5 += exp
|
||||
fallthrough // see fallthrough above
|
||||
case 2:
|
||||
exp2 += exp
|
||||
default:
|
||||
panic("unexpected exponent base")
|
||||
}
|
||||
powTen := nat(nil).expNN(natTen, nat(nil).setWord(Word(expabs)), nil)
|
||||
// exp consumed - not needed anymore
|
||||
|
||||
// complete fraction
|
||||
if exp < 0 {
|
||||
z.b.abs = powTen
|
||||
z.norm()
|
||||
} else {
|
||||
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
|
||||
z.b.abs = z.b.abs[:0]
|
||||
// compute pow5 if needed
|
||||
pow5 := z.b.abs
|
||||
if exp5 != 0 {
|
||||
n := exp5
|
||||
if n < 0 {
|
||||
n = -n
|
||||
}
|
||||
pow5 = pow5.expNN(natFive, nat(nil).setWord(Word(n)), nil)
|
||||
}
|
||||
|
||||
// apply dividend contributions of exponents
|
||||
// (start with exp5 so the numbers to multiply are smaller)
|
||||
if exp5 > 0 {
|
||||
z.a.abs = z.a.abs.mul(z.a.abs, pow5)
|
||||
exp5 = 0
|
||||
}
|
||||
if exp2 > 0 {
|
||||
if int64(uint(exp2)) != exp2 {
|
||||
panic("exponent too large")
|
||||
}
|
||||
z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
|
||||
exp2 = 0
|
||||
}
|
||||
|
||||
// apply divisor contributions of exponents
|
||||
z.b.abs = z.b.abs.setWord(1)
|
||||
if exp5 < 0 {
|
||||
z.b.abs = pow5
|
||||
}
|
||||
if exp2 < 0 {
|
||||
if int64(uint(-exp2)) != -exp2 {
|
||||
panic("exponent too large")
|
||||
}
|
||||
z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
|
||||
}
|
||||
|
||||
z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
|
||||
|
||||
return z, true
|
||||
return z.norm(), true
|
||||
}
|
||||
|
||||
// scanExponent scans the longest possible prefix of r representing a base 10
|
||||
@ -250,7 +324,7 @@ func (x *Rat) RatString() string {
|
||||
}
|
||||
|
||||
// FloatString returns a string representation of x in decimal form with prec
|
||||
// digits of precision after the decimal point. The last digit is rounded to
|
||||
// digits of precision after the radix point. The last digit is rounded to
|
||||
// nearest, with halves rounded away from zero.
|
||||
func (x *Rat) FloatString(prec int) string {
|
||||
var buf []byte
|
||||
|
@ -135,29 +135,49 @@ var setStringTests = []StringTest{
|
||||
var setStringTests2 = []StringTest{
|
||||
// invalid
|
||||
{in: "4/3x"},
|
||||
{in: "0/-1"},
|
||||
{in: "-1/-1"},
|
||||
|
||||
// invalid with separators
|
||||
// (smoke tests only - a comprehensive set of tests is in natconv_test.go)
|
||||
{in: "10_/1"},
|
||||
{in: "_10/1"},
|
||||
{in: "1/1__0"},
|
||||
{in: "1_000.0"}, // floats are base 10 which doesn't permit separators; see also issue #29799
|
||||
|
||||
// valid
|
||||
{"0b1000/3", "8/3", true},
|
||||
{"0B1000/0x8", "1", true},
|
||||
{"-010/1", "-8", true},
|
||||
{"-010.", "-10", true},
|
||||
{"-010/1", "-8", true}, // 0-prefix indicates octal in this case
|
||||
{"-010.0", "-10", true},
|
||||
{"-0o10/1", "-8", true},
|
||||
{"0x10/1", "16", true},
|
||||
{"0x10/0x20", "1/2", true},
|
||||
|
||||
{"0010", "10", true}, // 0-prefix is ignored in this case (not a fraction)
|
||||
{"0x10.0", "16", true},
|
||||
{"0x1.8", "3/2", true},
|
||||
{"0X1.8p4", "24", true},
|
||||
{"0x1.1E2", "2289/2048", true}, // E is part of hex mantissa, not exponent
|
||||
{"0b1.1E2", "150", true},
|
||||
{"0B1.1P3", "12", true},
|
||||
{"0o10e-2", "2/25", true},
|
||||
{"0O10p-3", "1", true},
|
||||
|
||||
// valid with separators
|
||||
// (smoke tests only - a comprehensive set of tests is in natconv_test.go)
|
||||
{"0b_1000/3", "8/3", true},
|
||||
{"0B_10_00/0x8", "1", true},
|
||||
{"0xdead/0B1101_1110_1010_1101", "1", true},
|
||||
{"0B1101_1110_1010_1101/0XD_E_A_D", "1", true},
|
||||
{"1_000.0", "1000", true},
|
||||
|
||||
{"0x_10.0", "16", true},
|
||||
{"0x1_0.0", "16", true},
|
||||
{"0x1.8_0", "3/2", true},
|
||||
{"0X1.8p0_4", "24", true},
|
||||
{"0b1.1_0E2", "150", true},
|
||||
{"0o1_0e-2", "2/25", true},
|
||||
{"0O_10p-3", "1", true},
|
||||
}
|
||||
|
||||
func TestRatSetString(t *testing.T) {
|
||||
|
Loading…
Reference in New Issue
Block a user