1
0
mirror of https://github.com/golang/go synced 2024-11-26 22:51:23 -07:00

math/big: move division into natdiv.go

Code moved and functions reordered to be in a consistent
top-down dependency order, but otherwise unchanged.

First step toward commenting division algorithms.

Change-Id: Ib5e604fb5b2867edff3a228ba4e57b5cb32c4137
Reviewed-on: https://go-review.googlesource.com/c/go/+/321077
Trust: Russ Cox <rsc@golang.org>
Trust: Katie Hockman <katie@golang.org>
Trust: Robert Griesemer <gri@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Katie Hockman <katie@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Russ Cox 2021-05-12 23:04:25 -04:00
parent d050238bb6
commit e4615ad74d
3 changed files with 346 additions and 339 deletions

View File

@ -267,20 +267,6 @@ func divWW(x1, x0, y, m Word) (q, r Word) {
return Word(qq), Word(r0 >> s)
}
func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
r = xn
if len(x) == 1 {
qq, rr := bits.Div(uint(r), uint(x[0]), uint(y))
z[0] = Word(qq)
return Word(rr)
}
rec := reciprocalWord(y)
for i := len(z) - 1; i >= 0; i-- {
z[i], r = divWW(r, x[i], y, rec)
}
return r
}
// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
func reciprocalWord(d1 Word) Word {
u := uint(d1 << nlz(d1))

View File

@ -631,48 +631,6 @@ func (z nat) mulRange(a, b uint64) nat {
return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
}
// q = (x-r)/y, with 0 <= r < y
func (z nat) divW(x nat, y Word) (q nat, r Word) {
m := len(x)
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = z.set(x) // result is x
return
case m == 0:
q = z[:0] // result is 0
return
}
// m > 0
z = z.make(m)
r = divWVW(z, 0, x, y)
q = z.norm()
return
}
func (z nat) div(z2, u, v nat) (q, r nat) {
if len(v) == 0 {
panic("division by zero")
}
if u.cmp(v) < 0 {
q = z[:0]
r = z2.set(u)
return
}
if len(v) == 1 {
var r2 Word
q, r2 = z.divW(u, v[0])
r = z2.setWord(r2)
return
}
q, r = z.divLarge(z2, u, v)
return
}
// getNat returns a *nat of len n. The contents may not be zero.
// The pool holds *nat to avoid allocation when converting to interface{}.
func getNat(n int) *nat {
@ -693,276 +651,6 @@ func putNat(x *nat) {
var natPool sync.Pool
// q = (uIn-r)/vIn, with 0 <= r < vIn
// Uses z as storage for q, and u as storage for r if possible.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(vIn) >= 2
// len(uIn) >= len(vIn)
// u must not alias z
func (z nat) divLarge(u, uIn, vIn nat) (q, r nat) {
n := len(vIn)
m := len(uIn) - n
// D1.
shift := nlz(vIn[n-1])
// do not modify vIn, it may be used by another goroutine simultaneously
vp := getNat(n)
v := *vp
shlVU(v, vIn, shift)
// u may safely alias uIn or vIn, the value of uIn is used to set u and vIn was already used
u = u.make(len(uIn) + 1)
u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
// z may safely alias uIn or vIn, both values were used already
if alias(z, u) {
z = nil // z is an alias for u - cannot reuse
}
q = z.make(m + 1)
if n < divRecursiveThreshold {
q.divBasic(u, v)
} else {
q.divRecursive(u, v)
}
putNat(vp)
q = q.norm()
shrVU(u, u, shift)
r = u.norm()
return q, r
}
// divBasic performs word-by-word division of u by v.
// The quotient is written in pre-allocated q.
// The remainder overwrites input u.
//
// Precondition:
// - q is large enough to hold the quotient u / v
// which has a maximum length of len(u)-len(v)+1.
func (q nat) divBasic(u, v nat) {
n := len(v)
m := len(u) - n
qhatvp := getNat(n + 1)
qhatv := *qhatvp
// D2.
vn1 := v[n-1]
rec := reciprocalWord(vn1)
for j := m; j >= 0; j-- {
// D3.
qhat := Word(_M)
var ujn Word
if j+n < len(u) {
ujn = u[j+n]
}
if ujn != vn1 {
var rhat Word
qhat, rhat = divWW(ujn, u[j+n-1], vn1, rec)
// x1 | x2 = q̂v_{n-2}
vn2 := v[n-2]
x1, x2 := mulWW(qhat, vn2)
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
ujn2 := u[j+n-2]
for greaterThan(x1, x2, rhat, ujn2) {
qhat--
prevRhat := rhat
rhat += vn1
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW(qhat, vn2)
}
}
// D4.
// Compute the remainder u - (q̂*v) << (_W*j).
// The subtraction may overflow if q̂ estimate was off by one.
qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
qhl := len(qhatv)
if j+qhl > len(u) && qhatv[n] == 0 {
qhl--
}
c := subVV(u[j:j+qhl], u[j:], qhatv)
if c != 0 {
c := addVV(u[j:j+n], u[j:], v)
// If n == qhl, the carry from subVV and the carry from addVV
// cancel out and don't affect u[j+n].
if n < qhl {
u[j+n] += c
}
qhat--
}
if j == m && m == len(q) && qhat == 0 {
continue
}
q[j] = qhat
}
putNat(qhatvp)
}
const divRecursiveThreshold = 100
// divRecursive performs word-by-word division of u by v.
// The quotient is written in pre-allocated z.
// The remainder overwrites input u.
//
// Precondition:
// - len(z) >= len(u)-len(v)
//
// See Burnikel, Ziegler, "Fast Recursive Division", Algorithm 1 and 2.
func (z nat) divRecursive(u, v nat) {
// Recursion depth is less than 2 log2(len(v))
// Allocate a slice of temporaries to be reused across recursion.
recDepth := 2 * bits.Len(uint(len(v)))
// large enough to perform Karatsuba on operands as large as v
tmp := getNat(3 * len(v))
temps := make([]*nat, recDepth)
z.clear()
z.divRecursiveStep(u, v, 0, tmp, temps)
for _, n := range temps {
if n != nil {
putNat(n)
}
}
putNat(tmp)
}
// divRecursiveStep computes the division of u by v.
// - z must be large enough to hold the quotient
// - the quotient will overwrite z
// - the remainder will overwrite u
func (z nat) divRecursiveStep(u, v nat, depth int, tmp *nat, temps []*nat) {
u = u.norm()
v = v.norm()
if len(u) == 0 {
z.clear()
return
}
n := len(v)
if n < divRecursiveThreshold {
z.divBasic(u, v)
return
}
m := len(u) - n
if m < 0 {
return
}
// Produce the quotient by blocks of B words.
// Division by v (length n) is done using a length n/2 division
// and a length n/2 multiplication for each block. The final
// complexity is driven by multiplication complexity.
B := n / 2
// Allocate a nat for qhat below.
if temps[depth] == nil {
temps[depth] = getNat(n)
} else {
*temps[depth] = temps[depth].make(B + 1)
}
j := m
for j > B {
// Divide u[j-B:j+n] by vIn. Keep remainder in u
// for next block.
//
// The following property will be used (Lemma 2):
// if u = u1 << s + u0
// v = v1 << s + v0
// then floor(u1/v1) >= floor(u/v)
//
// Moreover, the difference is at most 2 if len(v1) >= len(u/v)
// We choose s = B-1 since len(v)-s >= B+1 >= len(u/v)
s := (B - 1)
// Except for the first step, the top bits are always
// a division remainder, so the quotient length is <= n.
uu := u[j-B:]
qhat := *temps[depth]
qhat.clear()
qhat.divRecursiveStep(uu[s:B+n], v[s:], depth+1, tmp, temps)
qhat = qhat.norm()
// Adjust the quotient:
// u = u_h << s + u_l
// v = v_h << s + v_l
// u_h = q̂ v_h + rh
// u = q̂ (v - v_l) + rh << s + u_l
// After the above step, u contains a remainder:
// u = rh << s + u_l
// and we need to subtract q̂ v_l
//
// But it may be a bit too large, in which case q̂ needs to be smaller.
qhatv := tmp.make(3 * n)
qhatv.clear()
qhatv = qhatv.mul(qhat, v[:s])
for i := 0; i < 2; i++ {
e := qhatv.cmp(uu.norm())
if e <= 0 {
break
}
subVW(qhat, qhat, 1)
c := subVV(qhatv[:s], qhatv[:s], v[:s])
if len(qhatv) > s {
subVW(qhatv[s:], qhatv[s:], c)
}
addAt(uu[s:], v[s:], 0)
}
if qhatv.cmp(uu.norm()) > 0 {
panic("impossible")
}
c := subVV(uu[:len(qhatv)], uu[:len(qhatv)], qhatv)
if c > 0 {
subVW(uu[len(qhatv):], uu[len(qhatv):], c)
}
addAt(z, qhat, j-B)
j -= B
}
// Now u < (v<<B), compute lower bits in the same way.
// Choose shift = B-1 again.
s := B - 1
qhat := *temps[depth]
qhat.clear()
qhat.divRecursiveStep(u[s:].norm(), v[s:], depth+1, tmp, temps)
qhat = qhat.norm()
qhatv := tmp.make(3 * n)
qhatv.clear()
qhatv = qhatv.mul(qhat, v[:s])
// Set the correct remainder as before.
for i := 0; i < 2; i++ {
if e := qhatv.cmp(u.norm()); e > 0 {
subVW(qhat, qhat, 1)
c := subVV(qhatv[:s], qhatv[:s], v[:s])
if len(qhatv) > s {
subVW(qhatv[s:], qhatv[s:], c)
}
addAt(u[s:], v[s:], 0)
}
}
if qhatv.cmp(u.norm()) > 0 {
panic("impossible")
}
c := subVV(u[0:len(qhatv)], u[0:len(qhatv)], qhatv)
if c > 0 {
c = subVW(u[len(qhatv):], u[len(qhatv):], c)
}
if c > 0 {
panic("impossible")
}
// Done!
addAt(z, qhat.norm(), 0)
}
// Length of x in bits. x must be normalized.
func (x nat) bitLen() int {
if i := len(x) - 1; i >= 0 {
@ -1170,19 +858,6 @@ func (z nat) xor(x, y nat) nat {
return z.norm()
}
// greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool {
return x1 > y1 || x1 == y1 && x2 > y2
}
// modW returns x % d.
func (x nat) modW(d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
var q nat
q = q.make(len(x))
return divWVW(q, 0, x, d)
}
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {

346
src/math/big/natdiv.go Normal file
View File

@ -0,0 +1,346 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import "math/bits"
func (z nat) div(z2, u, v nat) (q, r nat) {
if len(v) == 0 {
panic("division by zero")
}
if u.cmp(v) < 0 {
q = z[:0]
r = z2.set(u)
return
}
if len(v) == 1 {
var r2 Word
q, r2 = z.divW(u, v[0])
r = z2.setWord(r2)
return
}
q, r = z.divLarge(z2, u, v)
return
}
// q = (x-r)/y, with 0 <= r < y
func (z nat) divW(x nat, y Word) (q nat, r Word) {
m := len(x)
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = z.set(x) // result is x
return
case m == 0:
q = z[:0] // result is 0
return
}
// m > 0
z = z.make(m)
r = divWVW(z, 0, x, y)
q = z.norm()
return
}
// modW returns x % d.
func (x nat) modW(d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
var q nat
q = q.make(len(x))
return divWVW(q, 0, x, d)
}
func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
r = xn
if len(x) == 1 {
qq, rr := bits.Div(uint(r), uint(x[0]), uint(y))
z[0] = Word(qq)
return Word(rr)
}
rec := reciprocalWord(y)
for i := len(z) - 1; i >= 0; i-- {
z[i], r = divWW(r, x[i], y, rec)
}
return r
}
// q = (uIn-r)/vIn, with 0 <= r < vIn
// Uses z as storage for q, and u as storage for r if possible.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(vIn) >= 2
// len(uIn) >= len(vIn)
// u must not alias z
func (z nat) divLarge(u, uIn, vIn nat) (q, r nat) {
n := len(vIn)
m := len(uIn) - n
// D1.
shift := nlz(vIn[n-1])
// do not modify vIn, it may be used by another goroutine simultaneously
vp := getNat(n)
v := *vp
shlVU(v, vIn, shift)
// u may safely alias uIn or vIn, the value of uIn is used to set u and vIn was already used
u = u.make(len(uIn) + 1)
u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
// z may safely alias uIn or vIn, both values were used already
if alias(z, u) {
z = nil // z is an alias for u - cannot reuse
}
q = z.make(m + 1)
if n < divRecursiveThreshold {
q.divBasic(u, v)
} else {
q.divRecursive(u, v)
}
putNat(vp)
q = q.norm()
shrVU(u, u, shift)
r = u.norm()
return q, r
}
// divBasic performs word-by-word division of u by v.
// The quotient is written in pre-allocated q.
// The remainder overwrites input u.
//
// Precondition:
// - q is large enough to hold the quotient u / v
// which has a maximum length of len(u)-len(v)+1.
func (q nat) divBasic(u, v nat) {
n := len(v)
m := len(u) - n
qhatvp := getNat(n + 1)
qhatv := *qhatvp
// D2.
vn1 := v[n-1]
rec := reciprocalWord(vn1)
for j := m; j >= 0; j-- {
// D3.
qhat := Word(_M)
var ujn Word
if j+n < len(u) {
ujn = u[j+n]
}
if ujn != vn1 {
var rhat Word
qhat, rhat = divWW(ujn, u[j+n-1], vn1, rec)
// x1 | x2 = q̂v_{n-2}
vn2 := v[n-2]
x1, x2 := mulWW(qhat, vn2)
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
ujn2 := u[j+n-2]
for greaterThan(x1, x2, rhat, ujn2) {
qhat--
prevRhat := rhat
rhat += vn1
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW(qhat, vn2)
}
}
// D4.
// Compute the remainder u - (q̂*v) << (_W*j).
// The subtraction may overflow if q̂ estimate was off by one.
qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
qhl := len(qhatv)
if j+qhl > len(u) && qhatv[n] == 0 {
qhl--
}
c := subVV(u[j:j+qhl], u[j:], qhatv)
if c != 0 {
c := addVV(u[j:j+n], u[j:], v)
// If n == qhl, the carry from subVV and the carry from addVV
// cancel out and don't affect u[j+n].
if n < qhl {
u[j+n] += c
}
qhat--
}
if j == m && m == len(q) && qhat == 0 {
continue
}
q[j] = qhat
}
putNat(qhatvp)
}
// greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool {
return x1 > y1 || x1 == y1 && x2 > y2
}
const divRecursiveThreshold = 100
// divRecursive performs word-by-word division of u by v.
// The quotient is written in pre-allocated z.
// The remainder overwrites input u.
//
// Precondition:
// - len(z) >= len(u)-len(v)
//
// See Burnikel, Ziegler, "Fast Recursive Division", Algorithm 1 and 2.
func (z nat) divRecursive(u, v nat) {
// Recursion depth is less than 2 log2(len(v))
// Allocate a slice of temporaries to be reused across recursion.
recDepth := 2 * bits.Len(uint(len(v)))
// large enough to perform Karatsuba on operands as large as v
tmp := getNat(3 * len(v))
temps := make([]*nat, recDepth)
z.clear()
z.divRecursiveStep(u, v, 0, tmp, temps)
for _, n := range temps {
if n != nil {
putNat(n)
}
}
putNat(tmp)
}
// divRecursiveStep computes the division of u by v.
// - z must be large enough to hold the quotient
// - the quotient will overwrite z
// - the remainder will overwrite u
func (z nat) divRecursiveStep(u, v nat, depth int, tmp *nat, temps []*nat) {
u = u.norm()
v = v.norm()
if len(u) == 0 {
z.clear()
return
}
n := len(v)
if n < divRecursiveThreshold {
z.divBasic(u, v)
return
}
m := len(u) - n
if m < 0 {
return
}
// Produce the quotient by blocks of B words.
// Division by v (length n) is done using a length n/2 division
// and a length n/2 multiplication for each block. The final
// complexity is driven by multiplication complexity.
B := n / 2
// Allocate a nat for qhat below.
if temps[depth] == nil {
temps[depth] = getNat(n)
} else {
*temps[depth] = temps[depth].make(B + 1)
}
j := m
for j > B {
// Divide u[j-B:j+n] by vIn. Keep remainder in u
// for next block.
//
// The following property will be used (Lemma 2):
// if u = u1 << s + u0
// v = v1 << s + v0
// then floor(u1/v1) >= floor(u/v)
//
// Moreover, the difference is at most 2 if len(v1) >= len(u/v)
// We choose s = B-1 since len(v)-s >= B+1 >= len(u/v)
s := (B - 1)
// Except for the first step, the top bits are always
// a division remainder, so the quotient length is <= n.
uu := u[j-B:]
qhat := *temps[depth]
qhat.clear()
qhat.divRecursiveStep(uu[s:B+n], v[s:], depth+1, tmp, temps)
qhat = qhat.norm()
// Adjust the quotient:
// u = u_h << s + u_l
// v = v_h << s + v_l
// u_h = q̂ v_h + rh
// u = q̂ (v - v_l) + rh << s + u_l
// After the above step, u contains a remainder:
// u = rh << s + u_l
// and we need to subtract q̂ v_l
//
// But it may be a bit too large, in which case q̂ needs to be smaller.
qhatv := tmp.make(3 * n)
qhatv.clear()
qhatv = qhatv.mul(qhat, v[:s])
for i := 0; i < 2; i++ {
e := qhatv.cmp(uu.norm())
if e <= 0 {
break
}
subVW(qhat, qhat, 1)
c := subVV(qhatv[:s], qhatv[:s], v[:s])
if len(qhatv) > s {
subVW(qhatv[s:], qhatv[s:], c)
}
addAt(uu[s:], v[s:], 0)
}
if qhatv.cmp(uu.norm()) > 0 {
panic("impossible")
}
c := subVV(uu[:len(qhatv)], uu[:len(qhatv)], qhatv)
if c > 0 {
subVW(uu[len(qhatv):], uu[len(qhatv):], c)
}
addAt(z, qhat, j-B)
j -= B
}
// Now u < (v<<B), compute lower bits in the same way.
// Choose shift = B-1 again.
s := B - 1
qhat := *temps[depth]
qhat.clear()
qhat.divRecursiveStep(u[s:].norm(), v[s:], depth+1, tmp, temps)
qhat = qhat.norm()
qhatv := tmp.make(3 * n)
qhatv.clear()
qhatv = qhatv.mul(qhat, v[:s])
// Set the correct remainder as before.
for i := 0; i < 2; i++ {
if e := qhatv.cmp(u.norm()); e > 0 {
subVW(qhat, qhat, 1)
c := subVV(qhatv[:s], qhatv[:s], v[:s])
if len(qhatv) > s {
subVW(qhatv[s:], qhatv[s:], c)
}
addAt(u[s:], v[s:], 0)
}
}
if qhatv.cmp(u.norm()) > 0 {
panic("impossible")
}
c := subVV(u[0:len(qhatv)], u[0:len(qhatv)], qhatv)
if c > 0 {
c = subVW(u[len(qhatv):], u[len(qhatv):], c)
}
if c > 0 {
panic("impossible")
}
// Done!
addAt(z, qhat.norm(), 0)
}