1
0
mirror of https://github.com/golang/go synced 2024-11-23 06:30:06 -07:00

net/http: routing tree

This CL implements a decision tree for efficient routing.
The tree holds all the registered patterns. To match
a request, we walk the tree looking for a match.

Change-Id: I7ed1cdf585fc95b73ef5ca2f942f278100a90583
Reviewed-on: https://go-review.googlesource.com/c/go/+/527315
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Damien Neil <dneil@google.com>
Run-TryBot: Jonathan Amsterdam <jba@google.com>
This commit is contained in:
Jonathan Amsterdam 2023-09-11 12:09:40 -04:00
parent c8396b5188
commit d8b349ea60
2 changed files with 456 additions and 0 deletions

View File

@ -0,0 +1,222 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements a decision tree for fast matching of requests to
// patterns.
//
// The root of the tree branches on the host of the request.
// The next level branches on the method.
// The remaining levels branch on consecutive segments of the path.
//
// The "more specific wins" precedence rule can result in backtracking.
// For example, given the patterns
// /a/b/z
// /a/{x}/c
// we will first try to match the path "/a/b/c" with /a/b/z, and
// when that fails we will try against /a/{x}/c.
package http
import (
"net/url"
"strings"
)
// A routingNode is a node in the decision tree.
// The same struct is used for leaf and interior nodes.
type routingNode struct {
// A leaf node holds a single pattern and the Handler it was registered
// with.
pattern *pattern
handler Handler
// An interior node maps parts of the incoming request to child nodes.
// special children keys:
// "/" trailing slash (resulting from {$})
// "" single wildcard
// "*" multi wildcard
children mapping[string, *routingNode]
emptyChild *routingNode // optimization: child with key ""
}
// addPattern adds a pattern and its associated Handler to the tree
// at root.
func (root *routingNode) addPattern(p *pattern, h Handler) {
// First level of tree is host.
n := root.addChild(p.host)
// Second level of tree is method.
n = n.addChild(p.method)
// Remaining levels are path.
n.addSegments(p.segments, p, h)
}
// addSegments adds the given segments to the tree rooted at n.
// If there are no segments, then n is a leaf node that holds
// the given pattern and handler.
func (n *routingNode) addSegments(segs []segment, p *pattern, h Handler) {
if len(segs) == 0 {
n.set(p, h)
return
}
seg := segs[0]
if seg.multi {
if len(segs) != 1 {
panic("multi wildcard not last")
}
n.addChild("*").set(p, h)
} else if seg.wild {
n.addChild("").addSegments(segs[1:], p, h)
} else {
n.addChild(seg.s).addSegments(segs[1:], p, h)
}
}
// set sets the pattern and handler for n, which
// must be a leaf node.
func (n *routingNode) set(p *pattern, h Handler) {
if n.pattern != nil || n.handler != nil {
panic("non-nil leaf fields")
}
n.pattern = p
n.handler = h
}
// addChild adds a child node with the given key to n
// if one does not exist, and returns the child.
func (n *routingNode) addChild(key string) *routingNode {
if key == "" {
if n.emptyChild == nil {
n.emptyChild = &routingNode{}
}
return n.emptyChild
}
if c := n.findChild(key); c != nil {
return c
}
c := &routingNode{}
n.children.add(key, c)
return c
}
// findChild returns the child of n with the given key, or nil
// if there is no child with that key.
func (n *routingNode) findChild(key string) *routingNode {
if key == "" {
return n.emptyChild
}
r, _ := n.children.find(key)
return r
}
// match returns the leaf node under root that matches the arguments, and a list
// of values for pattern wildcards in the order that the wildcards appear.
// For example, if the request path is "/a/b/c" and the pattern is "/{x}/b/{y}",
// then the second return value will be []string{"a", "c"}.
func (root *routingNode) match(host, method, path string) (*routingNode, []string) {
if host != "" {
// There is a host. If there is a pattern that specifies that host and it
// matches, we are done. If the pattern doesn't match, fall through to
// try patterns with no host.
if l, m := root.findChild(host).matchMethodAndPath(method, path); l != nil {
return l, m
}
}
return root.emptyChild.matchMethodAndPath(method, path)
}
// matchMethodAndPath matches the method and path.
// Its return values are the same as [routingNode.match].
// The receiver should be a child of the root.
func (n *routingNode) matchMethodAndPath(method, path string) (*routingNode, []string) {
if n == nil {
return nil, nil
}
if l, m := n.findChild(method).matchPath(path, nil); l != nil {
// Exact match of method name.
return l, m
}
if method == "HEAD" {
// GET matches HEAD too.
if l, m := n.findChild("GET").matchPath(path, nil); l != nil {
return l, m
}
}
// No exact match; try patterns with no method.
return n.emptyChild.matchPath(path, nil)
}
// matchPath matches a path.
// Its return values are the same as [routingNode.match].
// matchPath calls itself recursively. The matches argument holds the wildcard matches
// found so far.
func (n *routingNode) matchPath(path string, matches []string) (*routingNode, []string) {
if n == nil {
return nil, nil
}
// If path is empty, then we are done.
// If n is a leaf node, we found a match; return it.
// If n is an interior node (which means it has a nil pattern),
// then we failed to match.
if path == "" {
if n.pattern == nil {
return nil, nil
}
return n, matches
}
// Get the first segment of path.
seg, rest := firstSegment(path)
// First try matching against patterns that have a literal for this position.
// We know by construction that such patterns are more specific than those
// with a wildcard at this position (they are either more specific, equivalent,
// or overlap, and we ruled out the first two when the patterns were registered).
if n, m := n.findChild(seg).matchPath(rest, matches); n != nil {
return n, m
}
// If matching a literal fails, try again with patterns that have a single
// wildcard (represented by an empty string in the child mapping).
// Again, by construction, patterns with a single wildcard must be more specific than
// those with a multi wildcard.
// We skip this step if the segment is a trailing slash, because single wildcards
// don't match trailing slashes.
if seg != "/" {
if n, m := n.emptyChild.matchPath(rest, append(matches, matchValue(seg))); n != nil {
return n, m
}
}
// Lastly, match the pattern (there can be at most one) that has a multi
// wildcard in this position to the rest of the path.
if c := n.findChild("*"); c != nil {
// Don't record a match for a nameless wildcard (which arises from a
// trailing slash in the pattern).
if c.pattern.lastSegment().s != "" {
matches = append(matches, matchValue(path[1:])) // remove initial slash
}
return c, matches
}
return nil, nil
}
func matchValue(path string) string {
m, err := url.PathUnescape(path)
if err != nil {
// Path is not properly escaped, so use the original.
return path
}
return m
}
// firstSegment splits path into its first segment, and the rest.
// The path must begin with "/".
// If path consists of only a slash, firstSegment returns ("/", "").
func firstSegment(path string) (seg, rest string) {
if path == "/" {
return "/", ""
}
path = path[1:] // drop initial slash
i := strings.IndexByte(path, '/')
if i < 0 {
return path, ""
}
return path[:i], path[i:]
}

View File

@ -0,0 +1,234 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http
import (
"fmt"
"io"
"sort"
"strings"
"testing"
"slices"
)
func TestRoutingFirstSegment(t *testing.T) {
for _, test := range []struct {
in string
want []string
}{
{"/a/b/c", []string{"a", "b", "c"}},
{"/a/b/", []string{"a", "b", "/"}},
{"/", []string{"/"}},
} {
var got []string
rest := test.in
for len(rest) > 0 {
var seg string
seg, rest = firstSegment(rest)
got = append(got, seg)
}
if !slices.Equal(got, test.want) {
t.Errorf("%q: got %v, want %v", test.in, got, test.want)
}
}
}
// TODO: test host and method
var testTree *routingNode
func getTestTree() *routingNode {
if testTree == nil {
testTree = buildTree("/a", "/a/b", "/a/{x}",
"/g/h/i", "/g/{x}/j",
"/a/b/{x...}", "/a/b/{y}", "/a/b/{$}")
}
return testTree
}
func buildTree(pats ...string) *routingNode {
root := &routingNode{}
for _, p := range pats {
pat, err := parsePattern(p)
if err != nil {
panic(err)
}
root.addPattern(pat, nil)
}
return root
}
func TestRoutingAddPattern(t *testing.T) {
want := `"":
"":
"a":
"/a"
"":
"/a/{x}"
"b":
"/a/b"
"":
"/a/b/{y}"
"*":
"/a/b/{x...}"
"/":
"/a/b/{$}"
"g":
"":
"j":
"/g/{x}/j"
"h":
"i":
"/g/h/i"
`
var b strings.Builder
getTestTree().print(&b, 0)
got := b.String()
if got != want {
t.Errorf("got\n%s\nwant\n%s", got, want)
}
}
type testCase struct {
method, host, path string
wantPat string // "" for nil (no match)
wantMatches []string
}
func TestRoutingNodeMatch(t *testing.T) {
test := func(tree *routingNode, tests []testCase) {
t.Helper()
for _, test := range tests {
gotNode, gotMatches := tree.match(test.host, test.method, test.path)
got := ""
if gotNode != nil {
got = gotNode.pattern.String()
}
if got != test.wantPat {
t.Errorf("%s, %s, %s: got %q, want %q", test.host, test.method, test.path, got, test.wantPat)
}
if !slices.Equal(gotMatches, test.wantMatches) {
t.Errorf("%s, %s, %s: got matches %v, want %v", test.host, test.method, test.path, gotMatches, test.wantMatches)
}
}
}
test(getTestTree(), []testCase{
{"GET", "", "/a", "/a", nil},
{"Get", "", "/b", "", nil},
{"Get", "", "/a/b", "/a/b", nil},
{"Get", "", "/a/c", "/a/{x}", []string{"c"}},
{"Get", "", "/a/b/", "/a/b/{$}", nil},
{"Get", "", "/a/b/c", "/a/b/{y}", []string{"c"}},
{"Get", "", "/a/b/c/d", "/a/b/{x...}", []string{"c/d"}},
{"Get", "", "/g/h/i", "/g/h/i", nil},
{"Get", "", "/g/h/j", "/g/{x}/j", []string{"h"}},
})
tree := buildTree(
"/item/",
"POST /item/{user}",
"GET /item/{user}",
"/item/{user}",
"/item/{user}/{id}",
"/item/{user}/new",
"/item/{$}",
"POST alt.com/item/{user}",
"GET /headwins",
"HEAD /headwins",
"/path/{p...}")
test(tree, []testCase{
{"GET", "", "/item/jba",
"GET /item/{user}", []string{"jba"}},
{"POST", "", "/item/jba",
"POST /item/{user}", []string{"jba"}},
{"HEAD", "", "/item/jba",
"GET /item/{user}", []string{"jba"}},
{"get", "", "/item/jba",
"/item/{user}", []string{"jba"}}, // method matches are case-sensitive
{"POST", "", "/item/jba/17",
"/item/{user}/{id}", []string{"jba", "17"}},
{"GET", "", "/item/jba/new",
"/item/{user}/new", []string{"jba"}},
{"GET", "", "/item/",
"/item/{$}", []string{}},
{"GET", "", "/item/jba/17/line2",
"/item/", nil},
{"POST", "alt.com", "/item/jba",
"POST alt.com/item/{user}", []string{"jba"}},
{"GET", "alt.com", "/item/jba",
"GET /item/{user}", []string{"jba"}},
{"GET", "", "/item",
"", nil}, // does not match
{"GET", "", "/headwins",
"GET /headwins", nil},
{"HEAD", "", "/headwins", // HEAD is more specific than GET
"HEAD /headwins", nil},
{"GET", "", "/path/to/file",
"/path/{p...}", []string{"to/file"}},
})
// A pattern ending in {$} should only match URLS with a trailing slash.
pat1 := "/a/b/{$}"
test(buildTree(pat1), []testCase{
{"GET", "", "/a/b", "", nil},
{"GET", "", "/a/b/", pat1, nil},
{"GET", "", "/a/b/c", "", nil},
{"GET", "", "/a/b/c/d", "", nil},
})
// A pattern ending in a single wildcard should not match a trailing slash URL.
pat2 := "/a/b/{w}"
test(buildTree(pat2), []testCase{
{"GET", "", "/a/b", "", nil},
{"GET", "", "/a/b/", "", nil},
{"GET", "", "/a/b/c", pat2, []string{"c"}},
{"GET", "", "/a/b/c/d", "", nil},
})
// A pattern ending in a multi wildcard should match both URLs.
pat3 := "/a/b/{w...}"
test(buildTree(pat3), []testCase{
{"GET", "", "/a/b", "", nil},
{"GET", "", "/a/b/", pat3, []string{""}},
{"GET", "", "/a/b/c", pat3, []string{"c"}},
{"GET", "", "/a/b/c/d", pat3, []string{"c/d"}},
})
// All three of the above should work together.
test(buildTree(pat1, pat2, pat3), []testCase{
{"GET", "", "/a/b", "", nil},
{"GET", "", "/a/b/", pat1, nil},
{"GET", "", "/a/b/c", pat2, []string{"c"}},
{"GET", "", "/a/b/c/d", pat3, []string{"c/d"}},
})
}
func (n *routingNode) print(w io.Writer, level int) {
indent := strings.Repeat(" ", level)
if n.pattern != nil {
fmt.Fprintf(w, "%s%q\n", indent, n.pattern)
}
if n.emptyChild != nil {
fmt.Fprintf(w, "%s%q:\n", indent, "")
n.emptyChild.print(w, level+1)
}
var keys []string
n.children.eachPair(func(k string, _ *routingNode) bool {
keys = append(keys, k)
return true
})
sort.Strings(keys)
for _, k := range keys {
fmt.Fprintf(w, "%s%q:\n", indent, k)
n, _ := n.children.find(k)
n.print(w, level+1)
}
}