1
0
mirror of https://github.com/golang/go synced 2024-11-22 14:44:50 -07:00

exp/types: fixed field/method lookup

also:

- composite literal checking close to complete
- cleaned up parameter, method, field checking
- don't let panics escape type checker
- more TODOs eliminated

R=rsc
CC=golang-dev
https://golang.org/cl/6816083
This commit is contained in:
Robert Griesemer 2012-11-26 12:49:04 -08:00
parent d4f3185c24
commit d7b0271065
8 changed files with 649 additions and 127 deletions

View File

@ -36,7 +36,7 @@ type checker struct {
//
// TODO(gri) This is very similar to the declare function in go/parser; it
// is only used to associate methods with their respective receiver base types.
// In a future version, it might be simpler and cleaner do to all the resolution
// In a future version, it might be simpler and cleaner to do all the resolution
// in the type-checking phase. It would simplify the parser, AST, and also
// reduce some amount of code duplication.
//
@ -188,11 +188,7 @@ func (check *checker) object(obj *ast.Object, cycleOk bool) {
case ast.Fun:
fdecl := obj.Decl.(*ast.FuncDecl)
if fdecl.Recv != nil {
// This will ensure that the method base type is
// type-checked
check.collectFields(token.FUNC, fdecl.Recv, true)
}
check.collectParams(fdecl.Recv) // ensure method base is type-checked
ftyp := check.typ(fdecl.Type, cycleOk).(*Signature)
obj.Type = ftyp
check.function(ftyp, fdecl.Body)
@ -355,12 +351,19 @@ func check(fset *token.FileSet, pkg *ast.Package, errh func(token.Pos, string),
check.mapf = f
check.initexprs = make(map[*ast.ValueSpec][]ast.Expr)
// handle bailouts
// handle panics
defer func() {
if p := recover(); p != nil {
_ = p.(bailout) // re-panic if not a bailout
}
switch p := recover().(type) {
case nil:
// normal return - nothing to do
case bailout:
// early exit
err = check.firsterr
default:
// unexpected panic: don't crash clients
// panic(p) // enable for debugging
err = fmt.Errorf("types.check internal error: %v", p)
}
}()
// determine missing constant initialization expressions

View File

@ -48,6 +48,7 @@ var tests = []struct {
{"decls0", []string{"testdata/decls0.src"}},
{"decls1", []string{"testdata/decls1.src"}},
{"decls2", []string{"testdata/decls2a.src", "testdata/decls2b.src"}},
{"decls3", []string{"testdata/decls3.src"}},
{"const0", []string{"testdata/const0.src"}},
{"expr0", []string{"testdata/expr0.src"}},
{"expr1", []string{"testdata/expr1.src"}},

View File

@ -17,70 +17,98 @@ import (
// - simplify invalid handling: maybe just use Typ[Invalid] as marker, get rid of invalid Mode for values?
// - rethink error handling: should all callers check if x.mode == valid after making a call?
func (check *checker) tag(field *ast.Field) string {
if t := field.Tag; t != nil {
assert(t.Kind == token.STRING)
if tag, err := strconv.Unquote(t.Value); err == nil {
return tag
func (check *checker) collectParams(list *ast.FieldList) (params ObjList, isVariadic bool) {
if list == nil {
return
}
check.invalidAST(t.Pos(), "incorrect tag syntax: %q", t.Value)
}
return ""
}
// collectFields collects interface methods (tok = token.INTERFACE), and function arguments/results (tok = token.FUNC).
func (check *checker) collectFields(tok token.Token, list *ast.FieldList, cycleOk bool) (fields ObjList, tags []string, isVariadic bool) {
if list != nil {
for _, field := range list.List {
ftype := field.Type
if t, ok := ftype.(*ast.Ellipsis); ok {
ftype = t.Elt
isVariadic = true
}
typ := check.typ(ftype, cycleOk)
tag := check.tag(field)
// the parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag
typ := check.typ(ftype, true)
if len(field.Names) > 0 {
// named fields
// named parameter
for _, name := range field.Names {
obj := name.Obj
obj.Type = typ
fields = append(fields, obj)
if tok == token.STRUCT {
tags = append(tags, tag)
}
params = append(params, obj)
}
} else {
// anonymous field
switch tok {
case token.FUNC:
// anonymous parameter
obj := ast.NewObj(ast.Var, "")
obj.Type = typ
fields = append(fields, obj)
case token.INTERFACE:
utyp := underlying(typ)
if typ, ok := utyp.(*Interface); ok {
// TODO(gri) This is not good enough. Check for double declarations!
fields = append(fields, typ.Methods...)
} else if utyp != Typ[Invalid] {
// if utyp is invalid, don't complain (the root cause was reported before)
check.errorf(ftype.Pos(), "interface contains embedded non-interface type")
}
default:
panic("unreachable")
}
}
params = append(params, obj)
}
}
return
}
func (check *checker) collectStructFields(list *ast.FieldList, cycleOk bool) (fields []*StructField) {
func (check *checker) collectMethods(list *ast.FieldList) (methods ObjList) {
if list == nil {
return
}
for _, f := range list.List {
typ := check.typ(f.Type, len(f.Names) > 0) // cycles are not ok for embedded interfaces
// the parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag
if len(f.Names) > 0 {
// methods (the parser ensures that there's only one
// and we don't care if a constructed AST has more)
if _, ok := typ.(*Signature); !ok {
check.invalidAST(f.Type.Pos(), "%s is not a method signature", typ)
continue
}
for _, name := range f.Names {
obj := name.Obj
obj.Type = typ
methods = append(methods, obj)
}
} else {
// embedded interface
utyp := underlying(typ)
if ityp, ok := utyp.(*Interface); ok {
methods = append(methods, ityp.Methods...)
} else if utyp != Typ[Invalid] {
// if utyp is invalid, don't complain (the root cause was reported before)
check.errorf(f.Type.Pos(), "%s is not an interface type", typ)
}
}
}
// check for double declarations
methods.Sort()
prev := ""
for _, obj := range methods {
if obj.Name == prev {
check.errorf(list.Pos(), "multiple methods named %s", prev)
return // keep multiple entries, lookup will only return the first entry
}
}
return
}
func (check *checker) tag(t *ast.BasicLit) string {
if t != nil {
if t.Kind == token.STRING {
if val, err := strconv.Unquote(t.Value); err == nil {
return val
}
}
check.invalidAST(t.Pos(), "incorrect tag syntax: %q", t.Value)
}
return ""
}
func (check *checker) collectFields(list *ast.FieldList, cycleOk bool) (fields []*StructField) {
if list == nil {
return
}
for _, f := range list.List {
typ := check.typ(f.Type, cycleOk)
tag := check.tag(f)
tag := check.tag(f.Tag)
if len(f.Names) > 0 {
// named fields
for _, name := range f.Names {
@ -115,9 +143,6 @@ var unaryOpPredicates = opPredicates{
func (check *checker) op(m opPredicates, x *operand, op token.Token) bool {
if pred := m[op]; pred != nil {
if !pred(x.typ) {
// TODO(gri) better error message for <-x where x is a send-only channel
// (<- is defined but not permitted). Special-case here or
// handle higher up.
check.invalidOp(x.pos(), "operator %s not defined for %s", op, x)
return false
}
@ -537,27 +562,155 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
case *ast.FuncLit:
if typ, ok := check.typ(e.Type, false).(*Signature); ok {
x.mode = value
x.typ = check.typ(e.Type, false)
// TODO(gri) handle errors (e.g. x.typ is not a *Signature)
check.function(x.typ.(*Signature), e.Body)
x.typ = typ
check.function(typ, e.Body)
} else {
check.invalidAST(e.Pos(), "invalid function literal %s", e)
goto Error
}
case *ast.CompositeLit:
// TODO(gri)
// - determine element type if nil
// - deal with map elements
var typ Type
typ := hint
if e.Type != nil {
// TODO(gri) Fix this - just to get going for now
typ = check.typ(e.Type, false)
}
for _, e := range e.Elts {
var x operand
check.expr(&x, e, hint, iota)
// TODO(gri) check assignment compatibility to element type
if typ == nil {
check.errorf(e.Pos(), "missing type in composite literal")
goto Error
}
// TODO(gri) this is not correct - leave for now to get going
x.mode = variable
// TODO(gri) try to factor code below better
switch utyp := underlying(deref(typ)).(type) {
case *Struct:
if len(e.Elts) == 0 {
break
}
fields := utyp.Fields
if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
// all elements must have keys
visited := make([]bool, len(fields))
for _, e := range e.Elts {
kv, _ := e.(*ast.KeyValueExpr)
if kv == nil {
check.errorf(e.Pos(), "mixture of field:value and value elements in struct literal")
continue
}
key, _ := kv.Key.(*ast.Ident)
if key == nil {
check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
continue
}
i := utyp.fieldIndex(key.Name)
if i < 0 {
check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
continue
}
// 0 <= i < len(fields)
if visited[i] {
check.errorf(kv.Pos(), "duplicate field name %s in struct literal", key.Name)
continue
}
visited[i] = true
check.expr(x, kv.Value, nil, iota)
etyp := fields[i].Type
if !x.isAssignable(etyp) {
check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
continue
}
}
} else {
// no element must have a key
for i, e := range e.Elts {
if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
check.errorf(kv.Pos(), "mixture of field:value and value elements in struct literal")
continue
}
check.expr(x, e, nil, iota)
if i >= len(fields) {
check.errorf(x.pos(), "too many values in struct literal")
goto Error
}
etyp := fields[i].Type
if !x.isAssignable(etyp) {
check.errorf(x.pos(), "cannot use %s as an element of type %s in struct literal", x, etyp)
continue
}
}
if len(e.Elts) < len(fields) {
check.errorf(e.Rbrace, "too few values in struct literal")
goto Error
}
}
case *Array:
var index int64
for _, e := range e.Elts {
eval := e
if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
check.index(kv.Key, -1, iota)
eval = kv.Value
}
// TODO(gri) missing index range & duplicate check
check.expr(x, eval, utyp.Elt, iota)
if !x.isAssignable(utyp.Elt) {
check.errorf(x.pos(), "cannot use %s as %s value in array literal", x, utyp.Elt)
}
index++
}
case *Slice:
var index int64
for _, e := range e.Elts {
eval := e
if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
// TODO(gri) check key
check.index(kv.Key, -1, iota)
eval = kv.Value
}
// TODO(gri) missing index range & duplicate check
check.expr(x, eval, utyp.Elt, iota)
if !x.isAssignable(utyp.Elt) {
check.errorf(x.pos(), "cannot use %s as %s value in slice literal", x, utyp.Elt)
}
index++
}
case *Map:
visited := make(map[interface{}]bool, len(e.Elts))
for _, e := range e.Elts {
kv, _ := e.(*ast.KeyValueExpr)
if kv == nil {
check.errorf(e.Pos(), "missing key in map literal")
continue
}
check.expr(x, kv.Key, nil, iota)
if !x.isAssignable(utyp.Key) {
check.errorf(x.pos(), "cannot use %s as %s key in map literal", x, utyp.Key)
continue
}
if x.mode == constant {
if visited[x.val] {
check.errorf(x.pos(), "duplicate key %s in map literal", x.val)
continue
}
visited[x.val] = true
}
check.expr(x, kv.Value, utyp.Elt, iota)
if !x.isAssignable(utyp.Elt) {
check.errorf(x.pos(), "cannot use %s as %s value in map literal", x, utyp.Elt)
continue
}
}
default:
check.errorf(e.Pos(), "%s is not a valid composite literal type", typ)
goto Error
}
x.mode = variable // TODO(gri) mode is really a value - keep for now to get going
x.typ = typ
case *ast.ParenExpr:
@ -604,7 +757,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
mode, typ := lookupField(x.typ, sel)
if mode == invalid {
check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
check.invalidOp(e.Pos(), "%s has no single field or method %s", x, sel)
goto Error
}
if x.mode == typexpr {
@ -617,7 +770,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
// the receiver type becomes the type of the first function
// argument of the method expression's function type
// TODO(gri) at the moment, method sets don't correctly track
// pointer vs non-pointer receivers -> typechecker is too lenient
// pointer vs non-pointer receivers => typechecker is too lenient
arg := ast.NewObj(ast.Var, "")
arg.Type = x.typ
x.mode = value
@ -665,7 +818,12 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
x.typ = typ.Elt
case *Map:
// TODO(gri) check index type
var key operand
check.expr(&key, e.Index, nil, iota)
if key.mode == invalid || !key.isAssignable(typ.Key) {
check.invalidOp(x.pos(), "cannot use %s as map index of type %s", &key, typ.Key)
goto Error
}
x.mode = valueok
x.typ = typ.Elt
return
@ -827,7 +985,9 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
check.binary(x, &y, e.Op, hint)
case *ast.KeyValueExpr:
unimplemented()
// key:value expressions are handled in composite literals
check.invalidAST(e.Pos(), "no key:value expected")
goto Error
case *ast.ArrayType:
if e.Len != nil {
@ -862,19 +1022,17 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
case *ast.StructType:
x.mode = typexpr
x.typ = &Struct{Fields: check.collectStructFields(e.Fields, cycleOk)}
x.typ = &Struct{Fields: check.collectFields(e.Fields, cycleOk)}
case *ast.FuncType:
params, _, isVariadic := check.collectFields(token.FUNC, e.Params, true)
results, _, _ := check.collectFields(token.FUNC, e.Results, true)
params, isVariadic := check.collectParams(e.Params)
results, _ := check.collectParams(e.Results)
x.mode = typexpr
x.typ = &Signature{Recv: nil, Params: params, Results: results, IsVariadic: isVariadic}
case *ast.InterfaceType:
methods, _, _ := check.collectFields(token.INTERFACE, e.Methods, cycleOk)
methods.Sort()
x.mode = typexpr
x.typ = &Interface{Methods: methods}
x.typ = &Interface{Methods: check.collectMethods(e.Methods)}
case *ast.MapType:
x.mode = typexpr

View File

@ -125,7 +125,16 @@ func (x *operand) implements(T *Interface) bool {
return true // avoid spurious errors
}
unimplemented()
// x implements T if it implements all methods of T.
// TODO(gri): distinguish pointer and non-pointer receivers
for _, m := range T.Methods {
mode, typ := lookupField(x.typ, m.Name)
if mode == invalid || !isIdentical(typ, m.Type.(Type)) {
// TODO(gri) should report which method is missing
return false
}
}
return true
}
@ -134,6 +143,10 @@ func (x *operand) isNil() bool {
return x.mode == constant && x.val == nilConst
}
// TODO(gri) The functions operand.isAssignable, checker.convertUntyped,
// checker.isRepresentable, and checker.assignOperand are
// overlapping in functionality. Need to simplify and clean up.
// isAssignable reports whether x is assignable to a variable of type T.
func (x *operand) isAssignable(T Type) bool {
if x.mode == invalid || T == Typ[Invalid] {
@ -181,8 +194,18 @@ func (x *operand) isAssignable(T Type) bool {
}
// x is an untyped constant representable by a value of type T
// - this is taken care of in the assignment check
// TODO(gri) double-check - isAssignable is used elsewhere
// TODO(gri) This is borrowing from checker.convertUntyped and
// checker.isRepresentable. Need to clean up.
if isUntyped(Vu) {
switch t := Tu.(type) {
case *Basic:
return x.mode == constant && isRepresentableConst(x.val, t.Kind)
case *Interface:
return x.isNil() || len(t.Methods) == 0
case *Pointer, *Signature, *Slice, *Map, *Chan:
return x.isNil()
}
}
return false
}
@ -199,35 +222,50 @@ type lookupResult struct {
typ Type
}
// lookupFieldRecursive is similar to FieldByNameFunc in reflect/type.go
// TODO(gri): FieldByNameFunc seems more complex - what are we missing?
func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
// visited records the types that have been searched already
visited := make(map[Type]bool)
type embeddedType struct {
typ *NamedType
multiples bool // if set, typ is embedded multiple times at the same level
}
// lookupFieldBreadthFirst searches all types in list for a single entry (field
// or method) of the given name. If such a field is found, the result describes
// the field mode and type; otherwise the result mode is invalid.
// (This function is similar in structure to FieldByNameFunc in reflect/type.go)
//
func lookupFieldBreadthFirst(list []embeddedType, name string) (res lookupResult) {
// visited records the types that have been searched already.
visited := make(map[*NamedType]bool)
// embedded types of the next lower level
var next []*NamedType
var next []embeddedType
potentialMatch := func(mode operandMode, typ Type) bool {
if res.mode != invalid {
// name appeared multiple times at this level - annihilate
// potentialMatch is invoked every time a match is found.
potentialMatch := func(multiples bool, mode operandMode, typ Type) bool {
if multiples || res.mode != invalid {
// name appeared already at this level - annihilate
res.mode = invalid
return false
}
// first appearance of name
res.mode = mode
res.typ = typ
return true
}
// look for name in all types of this level
// Search the current level if there is any work to do and collect
// embedded types of the next lower level in the next list.
for len(list) > 0 {
// The res.mode indicates whether we have found a match already
// on this level (mode != invalid), or not (mode == invalid).
assert(res.mode == invalid)
for _, typ := range list {
// start with empty next list (don't waste underlying array)
next = next[:0]
// look for name in all types at this level
for _, e := range list {
typ := e.typ
if visited[typ] {
// We have seen this type before, at a higher level.
// That higher level shadows the lower level we are
// at now, and either we would have found or not
// found the field before. Ignore this type now.
continue
}
visited[typ] = true
@ -236,7 +274,7 @@ func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
if data := typ.Obj.Data; data != nil {
if obj := data.(*ast.Scope).Lookup(name); obj != nil {
assert(obj.Type != nil)
if !potentialMatch(value, obj.Type.(Type)) {
if !potentialMatch(e.multiples, value, obj.Type.(Type)) {
return // name collision
}
}
@ -244,21 +282,26 @@ func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
switch typ := underlying(typ).(type) {
case *Struct:
// look for a matching fieldm and collect embedded types
// look for a matching field and collect embedded types
for _, f := range typ.Fields {
if f.Name == name {
assert(f.Type != nil)
if !potentialMatch(variable, f.Type) {
if !potentialMatch(e.multiples, variable, f.Type) {
return // name collision
}
continue
}
// Collect embedded struct fields for searching the next
// lower level, but only if we have not seen a match yet.
// lower level, but only if we have not seen a match yet
// (if we have a match it is either the desired field or
// we have a name collision on the same level; in either
// case we don't need to look further).
// Embedded fields are always of the form T or *T where
// T is a named type.
// T is a named type. If typ appeared multiple times at
// this level, f.Type appears multiple times at the next
// level.
if f.IsAnonymous && res.mode == invalid {
next = append(next, deref(f.Type).(*NamedType))
next = append(next, embeddedType{deref(f.Type).(*NamedType), e.multiples})
}
}
@ -267,7 +310,7 @@ func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
for _, obj := range typ.Methods {
if obj.Name == name {
assert(obj.Type != nil)
if !potentialMatch(value, obj.Type.(Type)) {
if !potentialMatch(e.multiples, value, obj.Type.(Type)) {
return // name collision
}
}
@ -276,17 +319,41 @@ func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
}
if res.mode != invalid {
// we found a match on this level
// we found a single match on this level
return
}
// search the next level
list = append(list[:0], next...) // don't waste underlying arrays
next = next[:0]
// No match and no collision so far.
// Compute the list to search for the next level.
list = list[:0] // don't waste underlying array
for _, e := range next {
// Instead of adding the same type multiple times, look for
// it in the list and mark it as multiple if it was added
// before.
// We use a sequential search (instead of a map for next)
// because the lists tend to be small, can easily be reused,
// and explicit search appears to be faster in this case.
if alt := findType(list, e.typ); alt != nil {
alt.multiples = true
} else {
list = append(list, e)
}
}
}
return
}
func findType(list []embeddedType, typ *NamedType) *embeddedType {
for i := range list {
if p := &list[i]; p.typ == typ {
return p
}
}
return nil
}
func lookupField(typ Type, name string) (operandMode, Type) {
typ = deref(typ)
@ -301,17 +368,20 @@ func lookupField(typ Type, name string) (operandMode, Type) {
switch typ := underlying(typ).(type) {
case *Struct:
var list []*NamedType
var next []embeddedType
for _, f := range typ.Fields {
if f.Name == name {
return variable, f.Type
}
if f.IsAnonymous {
list = append(list, deref(f.Type).(*NamedType))
// Possible optimization: If the embedded type
// is a pointer to the current type we could
// ignore it.
next = append(next, embeddedType{typ: deref(f.Type).(*NamedType)})
}
}
if len(list) > 0 {
res := lookupFieldRecursive(list, name)
if len(next) > 0 {
res := lookupFieldBreadthFirst(next, name)
return res.mode, res.typ
}

View File

@ -41,7 +41,7 @@ type (
type (
p1 pi /* ERROR "no field or method foo" */ .foo
p1 pi /* ERROR "no single field or method foo" */ .foo
p2 unsafe.Pointer
)
@ -131,7 +131,7 @@ type (
m1(I5)
}
I6 interface {
S0 /* ERROR "non-interface" */
S0 /* ERROR "not an interface" */
}
I7 interface {
I1

231
src/pkg/exp/types/testdata/decls3.src vendored Normal file
View File

@ -0,0 +1,231 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// embedded types
package decls3
// fields with the same name at the same level cancel each other out
func _() {
type (
T1 struct { X int }
T2 struct { X int }
T3 struct { T1; T2 } // X is embedded twice at the same level via T1->X, T2->X
)
var t T3
_ = t /* ERROR "no single field or method" */ .X
}
func _() {
type (
T1 struct { X int }
T2 struct { T1 }
T3 struct { T1 }
T4 struct { T2; T3 } // X is embedded twice at the same level via T2->T1->X, T3->T1->X
)
var t T4
_ = t /* ERROR "no single field or method" */ .X
}
func issue4355() {
type (
T1 struct {X int}
T2 struct {T1}
T3 struct {T2}
T4 struct {T2}
T5 struct {T3; T4} // X is embedded twice at the same level via T3->T2->T1->X, T4->T2->T1->X
)
var t T5
_ = t /* ERROR "no single field or method" */ .X
}
// Borrowed from the FieldByName test cases in reflect/all_test.go.
type D1 struct {
d int
}
type D2 struct {
d int
}
type S0 struct {
A, B, C int
D1
D2
}
type S1 struct {
B int
S0
}
type S2 struct {
A int
*S1
}
type S1x struct {
S1
}
type S1y struct {
S1
}
type S3 struct {
S1x
S2
D, E int
*S1y
}
type S4 struct {
*S4
A int
}
// The X in S6 and S7 annihilate, but they also block the X in S8.S9.
type S5 struct {
S6
S7
S8
}
type S6 struct {
X int
}
type S7 S6
type S8 struct {
S9
}
type S9 struct {
X int
Y int
}
// The X in S11.S6 and S12.S6 annihilate, but they also block the X in S13.S8.S9.
type S10 struct {
S11
S12
S13
}
type S11 struct {
S6
}
type S12 struct {
S6
}
type S13 struct {
S8
}
func _() {
_ = struct /* ERROR "no single field or method" */ {}{}.Foo
_ = S0{}.A
_ = S0 /* ERROR "no single field or method" */ {}.D
_ = S1{}.A
_ = S1{}.B
_ = S1{}.S0
_ = S1{}.C
_ = S2{}.A
_ = S2{}.S1
_ = S2{}.B
_ = S2{}.C
_ = S2 /* ERROR "no single field or method" */ {}.D
_ = S3 /* ERROR "no single field or method" */ {}.S1
_ = S3{}.A
_ = S3 /* ERROR "no single field or method" */ {}.B
_ = S3{}.D
_ = S3{}.E
_ = S4{}.A
_ = S4 /* ERROR "no single field or method" */ {}.B
_ = S5 /* ERROR "no single field or method" */ {}.X
_ = S5{}.Y
_ = S10 /* ERROR "no single field or method" */ {}.X
_ = S10{}.Y
}
// Borrowed from the FieldByName benchmark in reflect/all_test.go.
type R0 struct {
*R1
*R2
*R3
*R4
}
type R1 struct {
*R5
*R6
*R7
*R8
}
type R2 R1
type R3 R1
type R4 R1
type R5 struct {
*R9
*R10
*R11
*R12
}
type R6 R5
type R7 R5
type R8 R5
type R9 struct {
*R13
*R14
*R15
*R16
}
type R10 R9
type R11 R9
type R12 R9
type R13 struct {
*R17
*R18
*R19
*R20
}
type R14 R13
type R15 R13
type R16 R13
type R17 struct {
*R21
*R22
*R23
*R24
}
type R18 R17
type R19 R17
type R20 R17
type R21 struct {
X int
}
type R22 R21
type R23 R21
type R24 R21
var _ = R0 /* ERROR "no single field or method" */ {}.X

View File

@ -126,9 +126,59 @@ type T struct {
func (*T) m() {}
func method_expressions() {
_ = T /* ERROR "no field or method" */ .a
_ = T /* ERROR "no single field or method" */ .a
_ = T /* ERROR "has no method" */ .x
_ = T.m
var f func(*T) = (*T).m
var g func(*T) = ( /* ERROR "cannot assign" */ T).m
}
func struct_literals() {
type T0 struct {
a, b, c int
}
type T1 struct {
T0
a, b int
u float64
s string
}
// keyed elements
_ = T1{}
_ = T1{a: 0, 1 /* ERROR "mixture of .* elements" */ }
_ = T1{aa /* ERROR "unknown field" */ : 0}
_ = T1{1 /* ERROR "invalid field name" */ : 0}
_ = T1{a: 0, s: "foo", u: 0, a /* ERROR "duplicate field" */: 10}
_ = T1{a: "foo" /* ERROR "cannot use" */ }
_ = T1{c /* ERROR "unknown field" */ : 0}
_ = T1{T0: { /* ERROR "missing type" */ }}
_ = T1{T0: T0{}}
_ = T1{T0 /* ERROR "invalid field name" */ .a: 0}
// unkeyed elements
_ = T0{1, 2, 3}
_ = T0{1, b /* ERROR "mixture" */ : 2, 3}
_ = T0{1, 2} /* ERROR "too few values" */
_ = T0{1, 2, 3, 4 /* ERROR "too many values" */ }
_ = T0{1, "foo" /* ERROR "cannot use" */, 3.4 /* ERROR "cannot use" */}
}
func array_literals() {
// TODO(gri)
}
func slice_literals() {
// TODO(gri)
}
func map_literals() {
type M0 map[string]int
_ = M0{}
_ = M0{1 /* ERROR "missing key" */ }
_ = M0{1 /* ERROR "cannot use .* as string key" */ : 2}
_ = M0{"foo": "bar" /* ERROR "cannot use .* as int value" */ }
_ = M0{"foo": 1, "bar": 2, "foo" /* ERROR "duplicate key" */ : 3 }
}

View File

@ -126,6 +126,15 @@ type Struct struct {
Fields []*StructField
}
func (typ *Struct) fieldIndex(name string) int {
for i, f := range typ.Fields {
if f.Name == name {
return i
}
}
return -1
}
// A Pointer represents a pointer type *Base.
type Pointer struct {
implementsType