1
0
mirror of https://github.com/golang/go synced 2024-11-25 00:57:59 -07:00

image/ycbcr: move the Y'CbCr types into image and image/color.

R=r, rsc
CC=golang-dev
https://golang.org/cl/5493084
This commit is contained in:
Nigel Tao 2011-12-21 10:29:21 +11:00
parent fe28d1aacf
commit d13ce8115d
16 changed files with 333 additions and 227 deletions

View File

@ -20,6 +20,7 @@ GOFILES=\
httputil.go\
imagecolor.go\
imagenew.go\
imageycbcr.go\
iocopyn.go\
main.go\
mapdelete.go\

View File

@ -0,0 +1,64 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"go/ast"
)
func init() {
register(imageycbcrFix)
}
var imageycbcrFix = fix{
"imageycbcr",
"2011-12-20",
imageycbcr,
`Adapt code to types moved from image/ycbcr to image and image/color.
http://codereview.appspot.com/5493084
`,
}
func imageycbcr(f *ast.File) (fixed bool) {
if !imports(f, "image/ycbcr") {
return
}
walk(f, func(n interface{}) {
s, ok := n.(*ast.SelectorExpr)
if !ok || !isTopName(s.X, "ycbcr") {
return
}
switch s.Sel.String() {
case "RGBToYCbCr", "YCbCrToRGB":
addImport(f, "image/color")
s.X.(*ast.Ident).Name = "color"
case "YCbCrColor":
addImport(f, "image/color")
s.X.(*ast.Ident).Name = "color"
s.Sel.Name = "YCbCr"
case "YCbCrColorModel":
addImport(f, "image/color")
s.X.(*ast.Ident).Name = "color"
s.Sel.Name = "YCbCrModel"
case "SubsampleRatio", "SubsampleRatio444", "SubsampleRatio422", "SubsampleRatio420":
addImport(f, "image")
s.X.(*ast.Ident).Name = "image"
s.Sel.Name = "YCbCr" + s.Sel.Name
case "YCbCr":
addImport(f, "image")
s.X.(*ast.Ident).Name = "image"
default:
return
}
fixed = true
})
deleteImport(f, "image/ycbcr")
return
}

View File

@ -0,0 +1,54 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
func init() {
addTestCases(ycbcrTests, imageycbcr)
}
var ycbcrTests = []testCase{
{
Name: "ycbcr.0",
In: `package main
import (
"image/ycbcr"
)
func f() {
_ = ycbcr.RGBToYCbCr
_ = ycbcr.YCbCrToRGB
_ = ycbcr.YCbCrColorModel
var _ ycbcr.YCbCrColor
var _ ycbcr.YCbCr
var (
_ ycbcr.SubsampleRatio = ycbcr.SubsampleRatio444
_ ycbcr.SubsampleRatio = ycbcr.SubsampleRatio422
_ ycbcr.SubsampleRatio = ycbcr.SubsampleRatio420
)
}
`,
Out: `package main
import (
"image"
"image/color"
)
func f() {
_ = color.RGBToYCbCr
_ = color.YCbCrToRGB
_ = color.YCbCrModel
var _ color.YCbCr
var _ image.YCbCr
var (
_ image.YCbCrSubsampleRatio = image.YCbCrSubsampleRatio444
_ image.YCbCrSubsampleRatio = image.YCbCrSubsampleRatio422
_ image.YCbCrSubsampleRatio = image.YCbCrSubsampleRatio420
)
}
`,
},
}

View File

@ -111,7 +111,6 @@ DIRS=\
image/jpeg\
image/png\
image/tiff\
image/ycbcr\
index/suffixarray\
io\
io/ioutil\
@ -205,7 +204,6 @@ NOTEST+=\
go/doc\
hash\
image/bmp\
image/color\
image/gif\
net/dict\
net/http/pprof\

View File

@ -10,5 +10,6 @@ GOFILES=\
geom.go\
image.go\
names.go\
ycbcr.go\
include ../../Make.pkg

View File

@ -7,5 +7,6 @@ include ../../../Make.inc
TARG=image/color
GOFILES=\
color.go\
ycbcr.go\
include ../../../Make.pkg

View File

@ -0,0 +1,99 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package color
// RGBToYCbCr converts an RGB triple to a Y'CbCr triple. All components lie
// within the range [0, 255].
func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// Y' = 0.2990*R + 0.5870*G + 0.1140*B
// Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
// Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
r1 := int(r)
g1 := int(g)
b1 := int(b)
yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
if yy < 0 {
yy = 0
} else if yy > 255 {
yy = 255
}
if cb < 0 {
cb = 0
} else if cb > 255 {
cb = 255
}
if cr < 0 {
cr = 0
} else if cr > 255 {
cr = 255
}
return uint8(yy), uint8(cb), uint8(cr)
}
// YCbCrToRGB converts a Y'CbCr triple to an RGB triple. All components lie
// within the range [0, 255].
func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// R = Y' + 1.40200*(Cr-128)
// G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
// B = Y' + 1.77200*(Cb-128)
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
yy1 := int(y)<<16 + 1<<15
cb1 := int(cb) - 128
cr1 := int(cr) - 128
r := (yy1 + 91881*cr1) >> 16
g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
b := (yy1 + 116130*cb1) >> 16
if r < 0 {
r = 0
} else if r > 255 {
r = 255
}
if g < 0 {
g = 0
} else if g > 255 {
g = 255
}
if b < 0 {
b = 0
} else if b > 255 {
b = 255
}
return uint8(r), uint8(g), uint8(b)
}
// YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
// one luma and two chroma components.
//
// JPEG, VP8, the MPEG family and other codecs use this color model. Such
// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
// speaking, the term YUV applies only to analog video signals, and Y' (luma)
// is Y (luminance) after applying gamma correction.
//
// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
// different formulae for converting between the two. This package follows
// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
type YCbCr struct {
Y, Cb, Cr uint8
}
func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
}
// YCbCrModel is the Model for Y'CbCr colors.
var YCbCrModel Model = ModelFunc(func(c Color) Color {
if _, ok := c.(YCbCr); ok {
return c
}
r, g, b, _ := c.RGBA()
y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
return YCbCr{y, u, v}
})

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ycbcr
package color
import (
"testing"

View File

@ -7,7 +7,6 @@ package draw
import (
"image"
"image/color"
"image/ycbcr"
"testing"
)
@ -97,7 +96,7 @@ func bench(b *testing.B, dcm, scm, mcm color.Model, op Op) {
}
}
src = src1
case ycbcr.YCbCrColorModel:
case color.YCbCrModel:
yy := make([]uint8, srcw*srch)
cb := make([]uint8, srcw*srch)
cr := make([]uint8, srcw*srch)
@ -106,13 +105,13 @@ func bench(b *testing.B, dcm, scm, mcm color.Model, op Op) {
cb[i] = uint8(5 * i % 0x100)
cr[i] = uint8(7 * i % 0x100)
}
src = &ycbcr.YCbCr{
src = &image.YCbCr{
Y: yy,
Cb: cb,
Cr: cr,
YStride: srcw,
CStride: srcw,
SubsampleRatio: ycbcr.SubsampleRatio444,
SubsampleRatio: image.YCbCrSubsampleRatio444,
Rect: image.Rect(0, 0, srcw, srch),
}
default:
@ -177,7 +176,7 @@ func BenchmarkNRGBASrc(b *testing.B) {
}
func BenchmarkYCbCr(b *testing.B) {
bench(b, color.RGBAModel, ycbcr.YCbCrColorModel, nil, Over)
bench(b, color.RGBAModel, color.YCbCrModel, nil, Over)
}
func BenchmarkGlyphOver(b *testing.B) {

View File

@ -11,7 +11,6 @@ package draw
import (
"image"
"image/color"
"image/ycbcr"
)
// m is the maximum color value returned by image.Color.RGBA.
@ -81,7 +80,7 @@ func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mas
case *image.NRGBA:
drawNRGBAOver(dst0, r, src0, sp)
return
case *ycbcr.YCbCr:
case *image.YCbCr:
drawYCbCr(dst0, r, src0, sp)
return
}
@ -104,7 +103,7 @@ func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mas
case *image.NRGBA:
drawNRGBASrc(dst0, r, src0, sp)
return
case *ycbcr.YCbCr:
case *image.YCbCr:
drawYCbCr(dst0, r, src0, sp)
return
}
@ -346,8 +345,8 @@ func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image
}
}
func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Point) {
// A YCbCr image is always fully opaque, and so if the mask is implicitly nil
func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) {
// An image.YCbCr is always fully opaque, and so if the mask is implicitly nil
// (i.e. fully opaque) then the op is effectively always Src.
var (
yy, cb, cr uint8
@ -357,7 +356,7 @@ func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Po
y0 := r.Min.Y - dst.Rect.Min.Y
y1 := r.Max.Y - dst.Rect.Min.Y
switch src.SubsampleRatio {
case ycbcr.SubsampleRatio422:
case image.YCbCrSubsampleRatio422:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
for x, sx := x0, sp.X; x != x1; x, sx = x+4, sx+1 {
@ -365,14 +364,14 @@ func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Po
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[sy*src.CStride+i]
cr = src.Cr[sy*src.CStride+i]
rr, gg, bb := ycbcr.YCbCrToRGB(yy, cb, cr)
rr, gg, bb := color.YCbCrToRGB(yy, cb, cr)
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
dpix[x+3] = 255
}
}
case ycbcr.SubsampleRatio420:
case image.YCbCrSubsampleRatio420:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
for x, sx := x0, sp.X; x != x1; x, sx = x+4, sx+1 {
@ -380,7 +379,7 @@ func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Po
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[j*src.CStride+i]
cr = src.Cr[j*src.CStride+i]
rr, gg, bb := ycbcr.YCbCrToRGB(yy, cb, cr)
rr, gg, bb := color.YCbCrToRGB(yy, cb, cr)
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
@ -395,7 +394,7 @@ func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *ycbcr.YCbCr, sp image.Po
yy = src.Y[sy*src.YStride+sx]
cb = src.Cb[sy*src.CStride+sx]
cr = src.Cr[sy*src.CStride+sx]
rr, gg, bb := ycbcr.YCbCrToRGB(yy, cb, cr)
rr, gg, bb := color.YCbCrToRGB(yy, cb, cr)
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb

View File

@ -7,7 +7,6 @@ package draw
import (
"image"
"image/color"
"image/ycbcr"
"testing"
)
@ -56,13 +55,13 @@ func vgradGreenNRGBA(alpha int) image.Image {
}
func vgradCr() image.Image {
m := &ycbcr.YCbCr{
m := &image.YCbCr{
Y: make([]byte, 16*16),
Cb: make([]byte, 16*16),
Cr: make([]byte, 16*16),
YStride: 16,
CStride: 16,
SubsampleRatio: ycbcr.SubsampleRatio444,
SubsampleRatio: image.YCbCrSubsampleRatio444,
Rect: image.Rect(0, 0, 16, 16),
}
for y := 0; y < 16; y++ {

View File

@ -11,7 +11,6 @@ import (
"bufio"
"image"
"image/color"
"image/ycbcr"
"io"
)
@ -97,7 +96,7 @@ type decoder struct {
r Reader
width, height int
img1 *image.Gray
img3 *ycbcr.YCbCr
img3 *image.YCbCr
ri int // Restart Interval.
nComp int
comp [nColorComponent]component
@ -203,20 +202,20 @@ func (d *decoder) makeImg(h0, v0, mxx, myy int) {
d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
return
}
var subsampleRatio ycbcr.SubsampleRatio
var subsampleRatio image.YCbCrSubsampleRatio
n := h0 * v0
switch n {
case 1:
subsampleRatio = ycbcr.SubsampleRatio444
subsampleRatio = image.YCbCrSubsampleRatio444
case 2:
subsampleRatio = ycbcr.SubsampleRatio422
subsampleRatio = image.YCbCrSubsampleRatio422
case 4:
subsampleRatio = ycbcr.SubsampleRatio420
subsampleRatio = image.YCbCrSubsampleRatio420
default:
panic("unreachable")
}
b := make([]byte, mxx*myy*(1*8*8*n+2*8*8))
d.img3 = &ycbcr.YCbCr{
d.img3 = &image.YCbCr{
Y: b[mxx*myy*(0*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+0*8*8)],
Cb: b[mxx*myy*(1*8*8*n+0*8*8) : mxx*myy*(1*8*8*n+1*8*8)],
Cr: b[mxx*myy*(1*8*8*n+1*8*8) : mxx*myy*(1*8*8*n+2*8*8)],
@ -466,7 +465,7 @@ func DecodeConfig(r io.Reader) (image.Config, error) {
case nGrayComponent:
return image.Config{color.GrayModel, d.width, d.height}, nil
case nColorComponent:
return image.Config{ycbcr.YCbCrColorModel, d.width, d.height}, nil
return image.Config{color.YCbCrModel, d.width, d.height}, nil
}
return image.Config{}, FormatError("missing SOF marker")
}

View File

@ -8,7 +8,7 @@ import (
"bufio"
"errors"
"image"
"image/ycbcr"
"image/color"
"io"
)
@ -379,7 +379,7 @@ func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) {
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA()
yy, cb, cr := ycbcr.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
yBlock[8*j+i] = int(yy)
cbBlock[8*j+i] = int(cb)
crBlock[8*j+i] = int(cr)
@ -404,7 +404,7 @@ func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block)
sx = xmax
}
pix := m.Pix[offset+sx*4:]
yy, cb, cr := ycbcr.RGBToYCbCr(pix[0], pix[1], pix[2])
yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2])
yBlock[8*j+i] = int(yy)
cbBlock[8*j+i] = int(cb)
crBlock[8*j+i] = int(cr)

87
src/pkg/image/ycbcr.go Normal file
View File

@ -0,0 +1,87 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package image
import (
"image/color"
)
// YCbCrSubsampleRatio is the chroma subsample ratio used in a YCbCr image.
type YCbCrSubsampleRatio int
const (
YCbCrSubsampleRatio444 YCbCrSubsampleRatio = iota
YCbCrSubsampleRatio422
YCbCrSubsampleRatio420
)
// YCbCr is an in-memory image of Y'CbCr colors. There is one Y sample per
// pixel, but each Cb and Cr sample can span one or more pixels.
// YStride is the Y slice index delta between vertically adjacent pixels.
// CStride is the Cb and Cr slice index delta between vertically adjacent pixels
// that map to separate chroma samples.
// It is not an absolute requirement, but YStride and len(Y) are typically
// multiples of 8, and:
// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1.
// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2.
// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4.
type YCbCr struct {
Y []uint8
Cb []uint8
Cr []uint8
YStride int
CStride int
SubsampleRatio YCbCrSubsampleRatio
Rect Rectangle
}
func (p *YCbCr) ColorModel() color.Model {
return color.YCbCrModel
}
func (p *YCbCr) Bounds() Rectangle {
return p.Rect
}
func (p *YCbCr) At(x, y int) color.Color {
if !(Point{x, y}.In(p.Rect)) {
return color.YCbCr{}
}
switch p.SubsampleRatio {
case YCbCrSubsampleRatio422:
i := x / 2
return color.YCbCr{
p.Y[y*p.YStride+x],
p.Cb[y*p.CStride+i],
p.Cr[y*p.CStride+i],
}
case YCbCrSubsampleRatio420:
i, j := x/2, y/2
return color.YCbCr{
p.Y[y*p.YStride+x],
p.Cb[j*p.CStride+i],
p.Cr[j*p.CStride+i],
}
}
// Default to 4:4:4 subsampling.
return color.YCbCr{
p.Y[y*p.YStride+x],
p.Cb[y*p.CStride+x],
p.Cr[y*p.CStride+x],
}
}
// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *YCbCr) SubImage(r Rectangle) Image {
q := new(YCbCr)
*q = *p
q.Rect = q.Rect.Intersect(r)
return q
}
func (p *YCbCr) Opaque() bool {
return true
}

View File

@ -1,11 +0,0 @@
# Copyright 2011 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include ../../../Make.inc
TARG=image/ycbcr
GOFILES=\
ycbcr.go\
include ../../../Make.pkg

View File

@ -1,184 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ycbcr provides images from the Y'CbCr color model.
//
// JPEG, VP8, the MPEG family and other codecs use this color model. Such
// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
// speaking, the term YUV applies only to analog video signals.
//
// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
// different formulae for converting between the two. This package follows
// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
package ycbcr
import (
"image"
"image/color"
)
// RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie
// within the range [0, 255].
func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// Y' = 0.2990*R + 0.5870*G + 0.1140*B
// Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
// Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
r1 := int(r)
g1 := int(g)
b1 := int(b)
yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
if yy < 0 {
yy = 0
} else if yy > 255 {
yy = 255
}
if cb < 0 {
cb = 0
} else if cb > 255 {
cb = 255
}
if cr < 0 {
cr = 0
} else if cr > 255 {
cr = 255
}
return uint8(yy), uint8(cb), uint8(cr)
}
// YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie
// within the range [0, 255].
func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// R = Y' + 1.40200*(Cr-128)
// G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
// B = Y' + 1.77200*(Cb-128)
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
yy1 := int(y)<<16 + 1<<15
cb1 := int(cb) - 128
cr1 := int(cr) - 128
r := (yy1 + 91881*cr1) >> 16
g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
b := (yy1 + 116130*cb1) >> 16
if r < 0 {
r = 0
} else if r > 255 {
r = 255
}
if g < 0 {
g = 0
} else if g > 255 {
g = 255
}
if b < 0 {
b = 0
} else if b > 255 {
b = 255
}
return uint8(r), uint8(g), uint8(b)
}
// YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for
// each of one luma and two chroma components.
type YCbCrColor struct {
Y, Cb, Cr uint8
}
func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) {
r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
}
func toYCbCrColor(c color.Color) color.Color {
if _, ok := c.(YCbCrColor); ok {
return c
}
r, g, b, _ := c.RGBA()
y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
return YCbCrColor{y, u, v}
}
// YCbCrColorModel is the color model for YCbCrColor.
var YCbCrColorModel color.Model = color.ModelFunc(toYCbCrColor)
// SubsampleRatio is the chroma subsample ratio used in a YCbCr image.
type SubsampleRatio int
const (
SubsampleRatio444 SubsampleRatio = iota
SubsampleRatio422
SubsampleRatio420
)
// YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel,
// but each Cb and Cr sample can span one or more pixels.
// YStride is the Y slice index delta between vertically adjacent pixels.
// CStride is the Cb and Cr slice index delta between vertically adjacent pixels
// that map to separate chroma samples.
// It is not an absolute requirement, but YStride and len(Y) are typically
// multiples of 8, and:
// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1.
// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2.
// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4.
type YCbCr struct {
Y []uint8
Cb []uint8
Cr []uint8
YStride int
CStride int
SubsampleRatio SubsampleRatio
Rect image.Rectangle
}
func (p *YCbCr) ColorModel() color.Model {
return YCbCrColorModel
}
func (p *YCbCr) Bounds() image.Rectangle {
return p.Rect
}
func (p *YCbCr) At(x, y int) color.Color {
if !(image.Point{x, y}.In(p.Rect)) {
return YCbCrColor{}
}
switch p.SubsampleRatio {
case SubsampleRatio422:
i := x / 2
return YCbCrColor{
p.Y[y*p.YStride+x],
p.Cb[y*p.CStride+i],
p.Cr[y*p.CStride+i],
}
case SubsampleRatio420:
i, j := x/2, y/2
return YCbCrColor{
p.Y[y*p.YStride+x],
p.Cb[j*p.CStride+i],
p.Cr[j*p.CStride+i],
}
}
// Default to 4:4:4 subsampling.
return YCbCrColor{
p.Y[y*p.YStride+x],
p.Cb[y*p.CStride+x],
p.Cr[y*p.CStride+x],
}
}
// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *YCbCr) SubImage(r image.Rectangle) image.Image {
q := new(YCbCr)
*q = *p
q.Rect = q.Rect.Intersect(r)
return q
}
func (p *YCbCr) Opaque() bool {
return true
}