1
0
mirror of https://github.com/golang/go synced 2024-11-24 23:07:56 -07:00

math: improved accuracy for Tan

R=rsc
CC=golang-dev
https://golang.org/cl/5298087
This commit is contained in:
Charles L. Dorian 2011-11-02 14:01:21 -04:00 committed by Russ Cox
parent 7df9ff5594
commit cefee3c919
2 changed files with 108 additions and 53 deletions

View File

@ -7,7 +7,6 @@ package math_test
import (
"fmt"
. "math"
"runtime"
"testing"
)
@ -2247,7 +2246,7 @@ func TestSqrt(t *testing.T) {
func TestTan(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Tan(vf[i]); !close(tan[i], f) {
if f := Tan(vf[i]); !veryclose(tan[i], f) {
t.Errorf("Tan(%g) = %g, want %g", vf[i], f, tan[i])
}
}
@ -2257,16 +2256,6 @@ func TestTan(t *testing.T) {
t.Errorf("Tan(%g) = %g, want %g", vfsinSC[i], f, sinSC[i])
}
}
// Make sure portable Tan(Pi/2) doesn't panic (it used to).
// The portable implementation returns NaN.
// Assembly implementations might not,
// because Pi/2 is not exactly representable.
if runtime.GOARCH != "386" {
if f := Tan(Pi / 2); !alike(f, NaN()) {
t.Errorf("Tan(%g) = %g, want %g", Pi/2, f, NaN())
}
}
}
func TestTanh(t *testing.T) {

View File

@ -1,64 +1,130 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
/*
Floating point tangent.
Floating-point tangent.
*/
// Tan returns the tangent of x.
func Tan(x float64) float64 {
// Coefficients are #4285 from Hart & Cheney. (19.74D)
const (
P0 = -.1306820264754825668269611177e+5
P1 = .1055970901714953193602353981e+4
P2 = -.1550685653483266376941705728e+2
P3 = .3422554387241003435328470489e-1
P4 = .3386638642677172096076369e-4
Q0 = -.1663895238947119001851464661e+5
Q1 = .4765751362916483698926655581e+4
Q2 = -.1555033164031709966900124574e+3
)
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
// available from http://www.netlib.org/cephes/cmath.tgz.
// The go code is a simplified version of the original C.
//
// tan.c
//
// Circular tangent
//
// SYNOPSIS:
//
// double x, y, tan();
// y = tan( x );
//
// DESCRIPTION:
//
// Returns the circular tangent of the radian argument x.
//
// Range reduction is modulo pi/4. A rational function
// x + x**3 P(x**2)/Q(x**2)
// is employed in the basic interval [0, pi/4].
//
// ACCURACY:
// Relative error:
// arithmetic domain # trials peak rms
// DEC +-1.07e9 44000 4.1e-17 1.0e-17
// IEEE +-1.07e9 30000 2.9e-16 8.1e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
// be meaningless for x > 2**49 = 5.6e14.
// [Accuracy loss statement from sin.go comments.]
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
flag := false
// tan coefficients
var _tanP = [...]float64{
-1.30936939181383777646E4, // 0xc0c992d8d24f3f38
1.15351664838587416140E6, // 0x413199eca5fc9ddd
-1.79565251976484877988E7, // 0xc1711fead3299176
}
var _tanQ = [...]float64{
1.00000000000000000000E0,
1.36812963470692954678E4, //0x40cab8a5eeb36572
-1.32089234440210967447E6, //0xc13427bc582abc96
2.50083801823357915839E7, //0x4177d98fc2ead8ef
-5.38695755929454629881E7, //0xc189afe03cbe5a31
}
// Tan returns the tangent of x.
//
// Special conditions are:
// Tan(±0) = ±0
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(x float64) float64 {
const (
PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
switch {
case x == 0 || x != x: // x == 0 || IsNaN():
return x // return ±0 || NaN()
case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
return NaN()
}
// make argument positive but save the sign
sign := false
if x < 0 {
x = -x
sign = true
}
x = x * (4 / Pi) /* overflow? */
var e float64
e, x = Modf(x)
i := int32(e)
switch i & 3 {
case 1:
x = 1 - x
flag = true
j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
y := float64(j) // integer part of x/(Pi/4), as float
case 2:
sign = !sign
flag = true
case 3:
x = 1 - x
sign = !sign
/* map zeros and singularities to origin */
if j&1 == 1 {
j += 1
y += 1
}
xsq := x * x
temp := ((((P4*xsq+P3)*xsq+P2)*xsq+P1)*xsq + P0) * x
temp = temp / (((xsq+Q2)*xsq+Q1)*xsq + Q0)
z := ((x - y*PI4A) - y*PI4B) - y*PI4C
zz := z * z
if flag {
if temp == 0 {
return NaN()
}
temp = 1 / temp
if zz > 1e-14 {
y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4]))
} else {
y = z
}
if j&2 == 2 {
y = -1 / y
}
if sign {
temp = -temp
y = -y
}
return temp
return y
}