mirror of
https://github.com/golang/go
synced 2024-11-20 04:34:41 -07:00
image/ycbcr: new package.
R=r, rsc, nigeltao_gnome CC=golang-dev, raph https://golang.org/cl/4374043
This commit is contained in:
parent
420a17e371
commit
ce89a233a2
@ -105,6 +105,7 @@ DIRS=\
|
||||
image\
|
||||
image/jpeg\
|
||||
image/png\
|
||||
image/ycbcr\
|
||||
index/suffixarray\
|
||||
io\
|
||||
io/ioutil\
|
||||
|
11
src/pkg/image/ycbcr/Makefile
Normal file
11
src/pkg/image/ycbcr/Makefile
Normal file
@ -0,0 +1,11 @@
|
||||
# Copyright 2011 The Go Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
include ../../../Make.inc
|
||||
|
||||
TARG=image/ycbcr
|
||||
GOFILES=\
|
||||
ycbcr.go\
|
||||
|
||||
include ../../../Make.pkg
|
174
src/pkg/image/ycbcr/ycbcr.go
Normal file
174
src/pkg/image/ycbcr/ycbcr.go
Normal file
@ -0,0 +1,174 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// The ycbcr package provides images from the Y'CbCr color model.
|
||||
//
|
||||
// JPEG, VP8, the MPEG family and other codecs use this color model. Such
|
||||
// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
|
||||
// speaking, the term YUV applies only to analog video signals.
|
||||
//
|
||||
// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
|
||||
// different formulae for converting between the two. This package follows
|
||||
// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
|
||||
package ycbcr
|
||||
|
||||
import (
|
||||
"image"
|
||||
)
|
||||
|
||||
// RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie
|
||||
// within the range [0, 255].
|
||||
func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
|
||||
// The JFIF specification says:
|
||||
// Y' = 0.2990*R + 0.5870*G + 0.1140*B
|
||||
// Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
|
||||
// Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
|
||||
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
|
||||
r1 := int(r)
|
||||
g1 := int(g)
|
||||
b1 := int(b)
|
||||
yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
|
||||
cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
|
||||
cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
|
||||
if yy < 0 {
|
||||
yy = 0
|
||||
} else if yy > 255 {
|
||||
yy = 255
|
||||
}
|
||||
if cb < 0 {
|
||||
cb = 0
|
||||
} else if cb > 255 {
|
||||
cb = 255
|
||||
}
|
||||
if cr < 0 {
|
||||
cr = 0
|
||||
} else if cr > 255 {
|
||||
cr = 255
|
||||
}
|
||||
return uint8(yy), uint8(cb), uint8(cr)
|
||||
}
|
||||
|
||||
// YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie
|
||||
// within the range [0, 255].
|
||||
func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
|
||||
// The JFIF specification says:
|
||||
// R = Y' + 1.40200*(Cr-128)
|
||||
// G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
|
||||
// B = Y' + 1.77200*(Cb-128)
|
||||
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
|
||||
yy1 := int(y)<<16 + 1<<15
|
||||
cb1 := int(cb) - 128
|
||||
cr1 := int(cr) - 128
|
||||
r := (yy1 + 91881*cr1) >> 16
|
||||
g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
|
||||
b := (yy1 + 116130*cb1) >> 16
|
||||
if r < 0 {
|
||||
r = 0
|
||||
} else if r > 255 {
|
||||
r = 255
|
||||
}
|
||||
if g < 0 {
|
||||
g = 0
|
||||
} else if g > 255 {
|
||||
g = 255
|
||||
}
|
||||
if b < 0 {
|
||||
b = 0
|
||||
} else if b > 255 {
|
||||
b = 255
|
||||
}
|
||||
return uint8(r), uint8(g), uint8(b)
|
||||
}
|
||||
|
||||
// YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for
|
||||
// each of one luma and two chroma components.
|
||||
type YCbCrColor struct {
|
||||
Y, Cb, Cr uint8
|
||||
}
|
||||
|
||||
func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) {
|
||||
r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
|
||||
return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
|
||||
}
|
||||
|
||||
func toYCbCrColor(c image.Color) image.Color {
|
||||
if _, ok := c.(YCbCrColor); ok {
|
||||
return c
|
||||
}
|
||||
r, g, b, _ := c.RGBA()
|
||||
y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
|
||||
return YCbCrColor{y, u, v}
|
||||
}
|
||||
|
||||
// YCbCrColorModel is the color model for YCbCrColor.
|
||||
var YCbCrColorModel image.ColorModel = image.ColorModelFunc(toYCbCrColor)
|
||||
|
||||
// SubsampleRatio is the chroma subsample ratio used in a YCbCr image.
|
||||
type SubsampleRatio int
|
||||
|
||||
const (
|
||||
SubsampleRatio444 SubsampleRatio = iota
|
||||
SubsampleRatio422
|
||||
SubsampleRatio420
|
||||
)
|
||||
|
||||
// YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel,
|
||||
// but each Cb and Cr sample can span one or more pixels.
|
||||
// YStride is the Y slice index delta between vertically adjacent pixels.
|
||||
// CStride is the Cb and Cr slice index delta between vertically adjacent pixels
|
||||
// that map to separate chroma samples.
|
||||
// It is not an absolute requirement, but YStride and len(Y) are typically
|
||||
// multiples of 8, and:
|
||||
// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1.
|
||||
// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2.
|
||||
// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4.
|
||||
type YCbCr struct {
|
||||
Y []uint8
|
||||
Cb []uint8
|
||||
Cr []uint8
|
||||
YStride int
|
||||
CStride int
|
||||
SubsampleRatio SubsampleRatio
|
||||
Rect image.Rectangle
|
||||
}
|
||||
|
||||
func (p *YCbCr) ColorModel() image.ColorModel {
|
||||
return YCbCrColorModel
|
||||
}
|
||||
|
||||
func (p *YCbCr) Bounds() image.Rectangle {
|
||||
return p.Rect
|
||||
}
|
||||
|
||||
func (p *YCbCr) At(x, y int) image.Color {
|
||||
if !p.Rect.Contains(image.Point{x, y}) {
|
||||
return YCbCrColor{}
|
||||
}
|
||||
switch p.SubsampleRatio {
|
||||
case SubsampleRatio422:
|
||||
i := x / 2
|
||||
return YCbCrColor{
|
||||
p.Y[y*p.YStride+x],
|
||||
p.Cb[y*p.CStride+i],
|
||||
p.Cr[y*p.CStride+i],
|
||||
}
|
||||
case SubsampleRatio420:
|
||||
i, j := x/2, y/2
|
||||
return YCbCrColor{
|
||||
p.Y[y*p.YStride+x],
|
||||
p.Cb[j*p.CStride+i],
|
||||
p.Cr[j*p.CStride+i],
|
||||
}
|
||||
}
|
||||
// Default to 4:4:4 subsampling.
|
||||
return YCbCrColor{
|
||||
p.Y[y*p.YStride+x],
|
||||
p.Cb[y*p.CStride+x],
|
||||
p.Cr[y*p.CStride+x],
|
||||
}
|
||||
}
|
||||
|
||||
func (p *YCbCr) Opaque() bool {
|
||||
return true
|
||||
}
|
33
src/pkg/image/ycbcr/ycbcr_test.go
Normal file
33
src/pkg/image/ycbcr/ycbcr_test.go
Normal file
@ -0,0 +1,33 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ycbcr
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func delta(x, y uint8) uint8 {
|
||||
if x >= y {
|
||||
return x - y
|
||||
}
|
||||
return y - x
|
||||
}
|
||||
|
||||
// Test that a subset of RGB space can be converted to YCbCr and back to within
|
||||
// 1/256 tolerance.
|
||||
func TestRoundtrip(t *testing.T) {
|
||||
for r := 0; r < 255; r += 7 {
|
||||
for g := 0; g < 255; g += 5 {
|
||||
for b := 0; b < 255; b += 3 {
|
||||
r0, g0, b0 := uint8(r), uint8(g), uint8(b)
|
||||
y, cb, cr := RGBToYCbCr(r0, g0, b0)
|
||||
r1, g1, b1 := YCbCrToRGB(y, cb, cr)
|
||||
if delta(r0, r1) > 1 || delta(g0, g1) > 1 || delta(b0, b1) > 1 {
|
||||
t.Fatalf("r0, g0, b0 = %d, %d, %d r1, g1, b1 = %d, %d, %d", r0, g0, b0, r1, g1, b1)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user