mirror of
https://github.com/golang/go
synced 2024-11-15 00:50:32 -07:00
crypto/internal/mlkem768: various performance optimizations
goos: linux
goarch: amd64
pkg: crypto/internal/mlkem768
cpu: Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz
│ c0a0ba254c
│ 2aeb615fa6 │
│ sec/op │ sec/op vs base │
KeyGen-4 73.36µ ± 0% 67.38µ ± 1% -8.15% (p=0.000 n=20)
Encaps-4 108.96µ ± 0% 99.56µ ± 1% -8.63% (p=0.000 n=20)
Decaps-4 132.19µ ± 0% 96.85µ ± 0% -26.74% (p=0.000 n=20)
RoundTrip/Alice-4 216.4µ ± 0% 173.1µ ± 0% -20.01% (p=0.000 n=20)
RoundTrip/Bob-4 109.5µ ± 0% 100.5µ ± 0% -8.19% (p=0.000 n=20)
Change-Id: I600116baa0b390bb83950a42c7693cd7806dba9a
Reviewed-on: https://go-review.googlesource.com/c/go/+/578797
Reviewed-by: Roland Shoemaker <roland@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Cherry Mui <cherryyz@google.com>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
This commit is contained in:
parent
eabf59bc47
commit
cc1659916d
@ -68,57 +68,123 @@ const (
|
||||
SeedSize = 32 + 32
|
||||
)
|
||||
|
||||
// GenerateKey generates an encapsulation key and a corresponding decapsulation
|
||||
// key, drawing random bytes from crypto/rand.
|
||||
//
|
||||
// The decapsulation key must be kept secret.
|
||||
func GenerateKey() (encapsulationKey, decapsulationKey []byte, err error) {
|
||||
d := make([]byte, 32)
|
||||
if _, err := rand.Read(d); err != nil {
|
||||
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
z := make([]byte, 32)
|
||||
if _, err := rand.Read(z); err != nil {
|
||||
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
ek, dk := kemKeyGen(d, z)
|
||||
return ek, dk, nil
|
||||
// A DecapsulationKey is the secret key used to decapsulate a shared key from a
|
||||
// ciphertext. It includes various precomputed values.
|
||||
type DecapsulationKey struct {
|
||||
dk [DecapsulationKeySize]byte
|
||||
encryptionKey
|
||||
decryptionKey
|
||||
}
|
||||
|
||||
// NewKeyFromSeed deterministically generates an encapsulation key and a
|
||||
// corresponding decapsulation key from a 64-byte seed. The seed must be
|
||||
// uniformly random.
|
||||
func NewKeyFromSeed(seed []byte) (encapsulationKey, decapsulationKey []byte, err error) {
|
||||
// Bytes returns the extended encoding of the decapsulation key, according to
|
||||
// FIPS 203 (DRAFT).
|
||||
func (dk *DecapsulationKey) Bytes() []byte {
|
||||
var b [DecapsulationKeySize]byte
|
||||
copy(b[:], dk.dk[:])
|
||||
return b[:]
|
||||
}
|
||||
|
||||
// EncapsulationKey returns the public encapsulation key necessary to produce
|
||||
// ciphertexts.
|
||||
func (dk *DecapsulationKey) EncapsulationKey() []byte {
|
||||
var b [EncapsulationKeySize]byte
|
||||
copy(b[:], dk.dk[decryptionKeySize:])
|
||||
return b[:]
|
||||
}
|
||||
|
||||
// encryptionKey is the parsed and expanded form of a PKE encryption key.
|
||||
type encryptionKey struct {
|
||||
t [k]nttElement // ByteDecode₁₂(ek[:384k])
|
||||
A [k * k]nttElement // A[i*k+j] = sampleNTT(ρ, j, i)
|
||||
}
|
||||
|
||||
// decryptionKey is the parsed and expanded form of a PKE decryption key.
|
||||
type decryptionKey struct {
|
||||
s [k]nttElement // ByteDecode₁₂(dk[:decryptionKeySize])
|
||||
}
|
||||
|
||||
// GenerateKey generates a new decapsulation key, drawing random bytes from
|
||||
// crypto/rand. The decapsulation key must be kept secret.
|
||||
func GenerateKey() (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return generateKey(dk)
|
||||
}
|
||||
|
||||
func generateKey(dk *DecapsulationKey) (*DecapsulationKey, error) {
|
||||
var d [32]byte
|
||||
if _, err := rand.Read(d[:]); err != nil {
|
||||
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
var z [32]byte
|
||||
if _, err := rand.Read(z[:]); err != nil {
|
||||
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
return kemKeyGen(dk, &d, &z), nil
|
||||
}
|
||||
|
||||
// NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte
|
||||
// seed in the "d || z" form. The seed must be uniformly random.
|
||||
func NewKeyFromSeed(seed []byte) (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return newKeyFromSeed(dk, seed)
|
||||
}
|
||||
|
||||
func newKeyFromSeed(dk *DecapsulationKey, seed []byte) (*DecapsulationKey, error) {
|
||||
if len(seed) != SeedSize {
|
||||
return nil, nil, errors.New("mlkem768: invalid seed length")
|
||||
return nil, errors.New("mlkem768: invalid seed length")
|
||||
}
|
||||
ek, dk := kemKeyGen(seed[:32], seed[32:])
|
||||
return ek, dk, nil
|
||||
d := (*[32]byte)(seed[:32])
|
||||
z := (*[32]byte)(seed[32:])
|
||||
return kemKeyGen(dk, d, z), nil
|
||||
}
|
||||
|
||||
// kemKeyGen generates an encapsulation key and a corresponding decapsulation key.
|
||||
//
|
||||
// It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15.
|
||||
func kemKeyGen(d, z []byte) (ek, dk []byte) {
|
||||
ekPKE, dkPKE := pkeKeyGen(d)
|
||||
dk = make([]byte, 0, DecapsulationKeySize)
|
||||
dk = append(dk, dkPKE...)
|
||||
dk = append(dk, ekPKE...)
|
||||
H := sha3.New256()
|
||||
H.Write(ekPKE)
|
||||
dk = H.Sum(dk)
|
||||
dk = append(dk, z...)
|
||||
return ekPKE, dk
|
||||
// NewKeyFromExtendedEncoding parses a decapsulation key from its FIPS 203
|
||||
// (DRAFT) extended encoding.
|
||||
func NewKeyFromExtendedEncoding(decapsulationKey []byte) (*DecapsulationKey, error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
dk := &DecapsulationKey{}
|
||||
return newKeyFromExtendedEncoding(dk, decapsulationKey)
|
||||
}
|
||||
|
||||
// pkeKeyGen generates a key pair for the underlying PKE from a 32-byte random seed.
|
||||
func newKeyFromExtendedEncoding(dk *DecapsulationKey, dkBytes []byte) (*DecapsulationKey, error) {
|
||||
if len(dkBytes) != DecapsulationKeySize {
|
||||
return nil, errors.New("mlkem768: invalid decapsulation key length")
|
||||
}
|
||||
|
||||
// Note that we don't check that H(ek) matches ekPKE, as that's not
|
||||
// specified in FIPS 203 (DRAFT). This is one reason to prefer the seed
|
||||
// private key format.
|
||||
dk.dk = [DecapsulationKeySize]byte(dkBytes)
|
||||
|
||||
dkPKE := dkBytes[:decryptionKeySize]
|
||||
if err := parseDK(&dk.decryptionKey, dkPKE); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ekPKE := dkBytes[decryptionKeySize : decryptionKeySize+encryptionKeySize]
|
||||
if err := parseEK(&dk.encryptionKey, ekPKE); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return dk, nil
|
||||
}
|
||||
|
||||
// kemKeyGen generates a decapsulation key.
|
||||
//
|
||||
// It implements K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12.
|
||||
func pkeKeyGen(d []byte) (ek, dk []byte) {
|
||||
G := sha3.Sum512(d)
|
||||
// It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15, and
|
||||
// K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12. The two are merged
|
||||
// to save copies and allocations.
|
||||
func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
|
||||
if dk == nil {
|
||||
dk = &DecapsulationKey{}
|
||||
}
|
||||
|
||||
G := sha3.Sum512(d[:])
|
||||
ρ, σ := G[:32], G[32:]
|
||||
|
||||
A := make([]nttElement, k*k)
|
||||
A := &dk.A
|
||||
for i := byte(0); i < k; i++ {
|
||||
for j := byte(0); j < k; j++ {
|
||||
// Note that this is consistent with Kyber round 3, rather than with
|
||||
@ -129,36 +195,51 @@ func pkeKeyGen(d []byte) (ek, dk []byte) {
|
||||
}
|
||||
|
||||
var N byte
|
||||
s, e := make([]nttElement, k), make([]nttElement, k)
|
||||
s := &dk.s
|
||||
for i := range s {
|
||||
s[i] = ntt(samplePolyCBD(σ, N))
|
||||
N++
|
||||
}
|
||||
e := make([]nttElement, k)
|
||||
for i := range e {
|
||||
e[i] = ntt(samplePolyCBD(σ, N))
|
||||
N++
|
||||
}
|
||||
|
||||
t := make([]nttElement, k) // A ◦ s + e
|
||||
for i := range t {
|
||||
t := &dk.t
|
||||
for i := range t { // t = A ◦ s + e
|
||||
t[i] = e[i]
|
||||
for j := range s {
|
||||
t[i] = polyAdd(t[i], nttMul(A[i*k+j], s[j]))
|
||||
}
|
||||
}
|
||||
|
||||
ek = make([]byte, 0, encryptionKeySize)
|
||||
for i := range t {
|
||||
ek = polyByteEncode(ek, t[i])
|
||||
}
|
||||
ek = append(ek, ρ...)
|
||||
// dkPKE ← ByteEncode₁₂(s)
|
||||
// ekPKE ← ByteEncode₁₂(t) || ρ
|
||||
// ek ← ekPKE
|
||||
// dk ← dkPKE || ek || H(ek) || z
|
||||
dkB := dk.dk[:0]
|
||||
|
||||
dk = make([]byte, 0, decryptionKeySize)
|
||||
for i := range s {
|
||||
dk = polyByteEncode(dk, s[i])
|
||||
dkB = polyByteEncode(dkB, s[i])
|
||||
}
|
||||
|
||||
return ek, dk
|
||||
for i := range t {
|
||||
dkB = polyByteEncode(dkB, t[i])
|
||||
}
|
||||
dkB = append(dkB, ρ...)
|
||||
|
||||
H := sha3.New256()
|
||||
H.Write(dkB[decryptionKeySize:])
|
||||
dkB = H.Sum(dkB)
|
||||
|
||||
dkB = append(dkB, z[:]...)
|
||||
|
||||
if len(dkB) != len(dk.dk) {
|
||||
panic("mlkem768: internal error: invalid decapsulation key size")
|
||||
}
|
||||
|
||||
return dk
|
||||
}
|
||||
|
||||
// Encapsulate generates a shared key and an associated ciphertext from an
|
||||
@ -167,65 +248,79 @@ func pkeKeyGen(d []byte) (ek, dk []byte) {
|
||||
//
|
||||
// The shared key must be kept secret.
|
||||
func Encapsulate(encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
|
||||
// The actual logic is in a separate function to outline this allocation.
|
||||
var cc [CiphertextSize]byte
|
||||
return encapsulate(&cc, encapsulationKey)
|
||||
}
|
||||
|
||||
func encapsulate(cc *[CiphertextSize]byte, encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
|
||||
if len(encapsulationKey) != EncapsulationKeySize {
|
||||
return nil, nil, errors.New("mlkem768: invalid encapsulation key length")
|
||||
}
|
||||
m := make([]byte, messageSize)
|
||||
if _, err := rand.Read(m); err != nil {
|
||||
var m [messageSize]byte
|
||||
if _, err := rand.Read(m[:]); err != nil {
|
||||
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
|
||||
}
|
||||
ciphertext, sharedKey, err = kemEncaps(encapsulationKey, m)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
return ciphertext, sharedKey, nil
|
||||
return kemEncaps(cc, encapsulationKey, &m)
|
||||
}
|
||||
|
||||
// kemEncaps generates a shared key and an associated ciphertext.
|
||||
//
|
||||
// It implements ML-KEM.Encaps according to FIPS 203 (DRAFT), Algorithm 16.
|
||||
func kemEncaps(ek, m []byte) (c, K []byte, err error) {
|
||||
H := sha3.Sum256(ek)
|
||||
func kemEncaps(cc *[CiphertextSize]byte, ek []byte, m *[messageSize]byte) (c, K []byte, err error) {
|
||||
if cc == nil {
|
||||
cc = &[CiphertextSize]byte{}
|
||||
}
|
||||
|
||||
H := sha3.Sum256(ek[:])
|
||||
g := sha3.New512()
|
||||
g.Write(m)
|
||||
g.Write(m[:])
|
||||
g.Write(H[:])
|
||||
G := g.Sum(nil)
|
||||
K, r := G[:SharedKeySize], G[SharedKeySize:]
|
||||
c, err = pkeEncrypt(ek, m, r)
|
||||
return c, K, err
|
||||
var ex encryptionKey
|
||||
if err := parseEK(&ex, ek[:]); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
c = pkeEncrypt(cc, &ex, m, r)
|
||||
return c, K, nil
|
||||
}
|
||||
|
||||
// pkeEncrypt encrypt a plaintext message. It expects ek (the encryption key) to
|
||||
// be 1184 bytes, and m (the message) and rnd (the randomness) to be 32 bytes.
|
||||
// parseEK parses an encryption key from its encoded form.
|
||||
//
|
||||
// It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13.
|
||||
func pkeEncrypt(ek, m, rnd []byte) ([]byte, error) {
|
||||
if len(ek) != encryptionKeySize {
|
||||
return nil, errors.New("mlkem768: invalid encryption key length")
|
||||
}
|
||||
if len(m) != messageSize {
|
||||
return nil, errors.New("mlkem768: invalid messages length")
|
||||
// It implements the initial stages of K-PKE.Encrypt according to FIPS 203
|
||||
// (DRAFT), Algorithm 13.
|
||||
func parseEK(ex *encryptionKey, ekPKE []byte) error {
|
||||
if len(ekPKE) != encryptionKeySize {
|
||||
return errors.New("mlkem768: invalid encryption key length")
|
||||
}
|
||||
|
||||
t := make([]nttElement, k)
|
||||
for i := range t {
|
||||
for i := range ex.t {
|
||||
var err error
|
||||
t[i], err = polyByteDecode[nttElement](ek[:encodingSize12])
|
||||
ex.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return err
|
||||
}
|
||||
ek = ek[encodingSize12:]
|
||||
ekPKE = ekPKE[encodingSize12:]
|
||||
}
|
||||
ρ := ek
|
||||
ρ := ekPKE
|
||||
|
||||
AT := make([]nttElement, k*k)
|
||||
for i := byte(0); i < k; i++ {
|
||||
for j := byte(0); j < k; j++ {
|
||||
// Note that i and j are inverted, as we need the transposed of A.
|
||||
AT[i*k+j] = sampleNTT(ρ, i, j)
|
||||
// See the note in pkeKeyGen about the order of the indices being
|
||||
// consistent with Kyber round 3.
|
||||
ex.A[i*k+j] = sampleNTT(ρ, j, i)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// pkeEncrypt encrypt a plaintext message.
|
||||
//
|
||||
// It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13,
|
||||
// although the computation of t and AT is done in parseEK.
|
||||
func pkeEncrypt(cc *[CiphertextSize]byte, ex *encryptionKey, m *[messageSize]byte, rnd []byte) []byte {
|
||||
var N byte
|
||||
r, e1 := make([]nttElement, k), make([]ringElement, k)
|
||||
for i := range r {
|
||||
@ -242,125 +337,107 @@ func pkeEncrypt(ek, m, rnd []byte) ([]byte, error) {
|
||||
for i := range u {
|
||||
u[i] = e1[i]
|
||||
for j := range r {
|
||||
u[i] = polyAdd(u[i], inverseNTT(nttMul(AT[i*k+j], r[j])))
|
||||
// Note that i and j are inverted, as we need the transposed of A.
|
||||
u[i] = polyAdd(u[i], inverseNTT(nttMul(ex.A[j*k+i], r[j])))
|
||||
}
|
||||
}
|
||||
|
||||
μ, err := ringDecodeAndDecompress1(m)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
μ := ringDecodeAndDecompress1(m)
|
||||
|
||||
var vNTT nttElement // t⊺ ◦ r
|
||||
for i := range t {
|
||||
vNTT = polyAdd(vNTT, nttMul(t[i], r[i]))
|
||||
for i := range ex.t {
|
||||
vNTT = polyAdd(vNTT, nttMul(ex.t[i], r[i]))
|
||||
}
|
||||
v := polyAdd(polyAdd(inverseNTT(vNTT), e2), μ)
|
||||
|
||||
c := make([]byte, 0, CiphertextSize)
|
||||
c := cc[:0]
|
||||
for _, f := range u {
|
||||
c = ringCompressAndEncode10(c, f)
|
||||
}
|
||||
c = ringCompressAndEncode4(c, v)
|
||||
|
||||
return c, nil
|
||||
return c
|
||||
}
|
||||
|
||||
// Decapsulate generates a shared key from a ciphertext and a decapsulation key.
|
||||
// If the decapsulation key or the ciphertext are not valid, Decapsulate returns
|
||||
// an error.
|
||||
// If the ciphertext is not valid, Decapsulate returns an error.
|
||||
//
|
||||
// The shared key must be kept secret.
|
||||
func Decapsulate(decapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
|
||||
if len(decapsulationKey) != DecapsulationKeySize {
|
||||
return nil, errors.New("mlkem768: invalid decapsulation key length")
|
||||
}
|
||||
func Decapsulate(dk *DecapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
|
||||
if len(ciphertext) != CiphertextSize {
|
||||
return nil, errors.New("mlkem768: invalid ciphertext length")
|
||||
}
|
||||
return kemDecaps(decapsulationKey, ciphertext)
|
||||
c := (*[CiphertextSize]byte)(ciphertext)
|
||||
return kemDecaps(dk, c), nil
|
||||
}
|
||||
|
||||
// kemDecaps produces a shared key from a ciphertext.
|
||||
//
|
||||
// It implements ML-KEM.Decaps according to FIPS 203 (DRAFT), Algorithm 17.
|
||||
func kemDecaps(dk, c []byte) (K []byte, err error) {
|
||||
dkPKE := dk[:decryptionKeySize]
|
||||
ekPKE := dk[decryptionKeySize : decryptionKeySize+encryptionKeySize]
|
||||
h := dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32]
|
||||
z := dk[decryptionKeySize+encryptionKeySize+32:]
|
||||
func kemDecaps(dk *DecapsulationKey, c *[CiphertextSize]byte) (K []byte) {
|
||||
h := dk.dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32]
|
||||
z := dk.dk[decryptionKeySize+encryptionKeySize+32:]
|
||||
|
||||
m, err := pkeDecrypt(dkPKE, c)
|
||||
if err != nil {
|
||||
// This is only reachable if the ciphertext or the decryption key are
|
||||
// encoded incorrectly, so it leaks no information about the message.
|
||||
return nil, err
|
||||
}
|
||||
m := pkeDecrypt(&dk.decryptionKey, c)
|
||||
g := sha3.New512()
|
||||
g.Write(m)
|
||||
g.Write(m[:])
|
||||
g.Write(h)
|
||||
G := g.Sum(nil)
|
||||
Kprime, r := G[:SharedKeySize], G[SharedKeySize:]
|
||||
J := sha3.NewShake256()
|
||||
J.Write(z)
|
||||
J.Write(c)
|
||||
J.Write(c[:])
|
||||
Kout := make([]byte, SharedKeySize)
|
||||
J.Read(Kout)
|
||||
c1, err := pkeEncrypt(ekPKE, m, r)
|
||||
if err != nil {
|
||||
// Likewise, this is only reachable if the encryption key is encoded
|
||||
// incorrectly, so it leaks no secret information through timing.
|
||||
return nil, err
|
||||
}
|
||||
var cc [CiphertextSize]byte
|
||||
c1 := pkeEncrypt(&cc, &dk.encryptionKey, (*[32]byte)(m), r)
|
||||
|
||||
subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c, c1), Kout, Kprime)
|
||||
return Kout, nil
|
||||
subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c[:], c1), Kout, Kprime)
|
||||
return Kout
|
||||
}
|
||||
|
||||
// pkeDecrypt decrypts a ciphertext. It expects dk (the decryption key) to
|
||||
// be 1152 bytes, and c (the ciphertext) to be 1088 bytes.
|
||||
// parseDK parses a decryption key from its encoded form.
|
||||
//
|
||||
// It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14.
|
||||
func pkeDecrypt(dk, c []byte) ([]byte, error) {
|
||||
if len(dk) != decryptionKeySize {
|
||||
return nil, errors.New("mlkem768: invalid decryption key length")
|
||||
}
|
||||
if len(c) != CiphertextSize {
|
||||
return nil, errors.New("mlkem768: invalid ciphertext length")
|
||||
// It implements the computation of s from K-PKE.Decrypt according to FIPS 203
|
||||
// (DRAFT), Algorithm 14.
|
||||
func parseDK(dx *decryptionKey, dkPKE []byte) error {
|
||||
if len(dkPKE) != decryptionKeySize {
|
||||
return errors.New("mlkem768: invalid decryption key length")
|
||||
}
|
||||
|
||||
for i := range dx.s {
|
||||
f, err := polyByteDecode[nttElement](dkPKE[:encodingSize12])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
dx.s[i] = f
|
||||
dkPKE = dkPKE[encodingSize12:]
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// pkeDecrypt decrypts a ciphertext.
|
||||
//
|
||||
// It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14,
|
||||
// although the computation of s is done in parseDK.
|
||||
func pkeDecrypt(dx *decryptionKey, c *[CiphertextSize]byte) []byte {
|
||||
u := make([]ringElement, k)
|
||||
for i := range u {
|
||||
f, err := ringDecodeAndDecompress10(c[:encodingSize10])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
u[i] = f
|
||||
c = c[encodingSize10:]
|
||||
b := (*[encodingSize10]byte)(c[encodingSize10*i : encodingSize10*(i+1)])
|
||||
u[i] = ringDecodeAndDecompress10(b)
|
||||
}
|
||||
|
||||
v, err := ringDecodeAndDecompress4(c)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
s := make([]nttElement, k)
|
||||
for i := range s {
|
||||
f, err := polyByteDecode[nttElement](dk[:encodingSize12])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
s[i] = f
|
||||
dk = dk[encodingSize12:]
|
||||
}
|
||||
b := (*[encodingSize4]byte)(c[encodingSize10*k:])
|
||||
v := ringDecodeAndDecompress4(b)
|
||||
|
||||
var mask nttElement // s⊺ ◦ NTT(u)
|
||||
for i := range s {
|
||||
mask = polyAdd(mask, nttMul(s[i], ntt(u[i])))
|
||||
for i := range dx.s {
|
||||
mask = polyAdd(mask, nttMul(dx.s[i], ntt(u[i])))
|
||||
}
|
||||
w := polySub(v, inverseNTT(mask))
|
||||
|
||||
return ringCompressAndEncode1(nil, w), nil
|
||||
return ringCompressAndEncode1(nil, w)
|
||||
}
|
||||
|
||||
// fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced.
|
||||
@ -397,7 +474,7 @@ const (
|
||||
barrettShift = 24 // log₂(2¹² * 2¹²)
|
||||
)
|
||||
|
||||
// fieldReduce reduces a value a < q² using Barrett reduction, to avoid
|
||||
// fieldReduce reduces a value a < 2q² using Barrett reduction, to avoid
|
||||
// potentially variable-time division.
|
||||
func fieldReduce(a uint32) fieldElement {
|
||||
quotient := uint32((uint64(a) * barrettMultiplier) >> barrettShift)
|
||||
@ -409,6 +486,21 @@ func fieldMul(a, b fieldElement) fieldElement {
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// fieldMulSub returns a * (b - c). This operation is fused to save a
|
||||
// fieldReduceOnce after the subtraction.
|
||||
func fieldMulSub(a, b, c fieldElement) fieldElement {
|
||||
x := uint32(a) * uint32(b-c+q)
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// fieldAddMul returns a * b + c * d. This operation is fused to save a
|
||||
// fieldReduceOnce and a fieldReduce.
|
||||
func fieldAddMul(a, b, c, d fieldElement) fieldElement {
|
||||
x := uint32(a) * uint32(b)
|
||||
x += uint32(c) * uint32(d)
|
||||
return fieldReduce(x)
|
||||
}
|
||||
|
||||
// compress maps a field element uniformly to the range 0 to 2ᵈ-1, according to
|
||||
// FIPS 203 (DRAFT), Definition 4.5.
|
||||
func compress(x fieldElement, d uint8) uint16 {
|
||||
@ -558,17 +650,14 @@ func ringCompressAndEncode1(s []byte, f ringElement) []byte {
|
||||
//
|
||||
// It implements ByteDecode₁, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₁, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress1(b []byte) (ringElement, error) {
|
||||
if len(b) != encodingSize1 {
|
||||
return ringElement{}, errors.New("mlkem768: invalid message length")
|
||||
}
|
||||
func ringDecodeAndDecompress1(b *[encodingSize1]byte) ringElement {
|
||||
var f ringElement
|
||||
for i := range f {
|
||||
b_i := b[i/8] >> (i % 8) & 1
|
||||
const halfQ = (q + 1) / 2 // ⌈q/2⌋, rounded up per FIPS 203 (DRAFT), Section 2.3
|
||||
f[i] = fieldElement(b_i) * halfQ // 0 decompresses to 0, and 1 to ⌈q/2⌋
|
||||
}
|
||||
return f, nil
|
||||
return f
|
||||
}
|
||||
|
||||
// ringCompressAndEncode4 appends a 128-byte encoding of a ring element to s,
|
||||
@ -589,16 +678,13 @@ func ringCompressAndEncode4(s []byte, f ringElement) []byte {
|
||||
//
|
||||
// It implements ByteDecode₄, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₄, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress4(b []byte) (ringElement, error) {
|
||||
if len(b) != encodingSize4 {
|
||||
return ringElement{}, errors.New("mlkem768: invalid encoding length")
|
||||
}
|
||||
func ringDecodeAndDecompress4(b *[encodingSize4]byte) ringElement {
|
||||
var f ringElement
|
||||
for i := 0; i < n; i += 2 {
|
||||
f[i] = fieldElement(decompress(uint16(b[i/2]&0b1111), 4))
|
||||
f[i+1] = fieldElement(decompress(uint16(b[i/2]>>4), 4))
|
||||
}
|
||||
return f, nil
|
||||
return f
|
||||
}
|
||||
|
||||
// ringCompressAndEncode10 appends a 320-byte encoding of a ring element to s,
|
||||
@ -629,10 +715,8 @@ func ringCompressAndEncode10(s []byte, f ringElement) []byte {
|
||||
//
|
||||
// It implements ByteDecode₁₀, according to FIPS 203 (DRAFT), Algorithm 5,
|
||||
// followed by Decompress₁₀, according to FIPS 203 (DRAFT), Definition 4.6.
|
||||
func ringDecodeAndDecompress10(b []byte) (ringElement, error) {
|
||||
if len(b) != encodingSize10 {
|
||||
return ringElement{}, errors.New("mlkem768: invalid encoding length")
|
||||
}
|
||||
func ringDecodeAndDecompress10(bb *[encodingSize10]byte) ringElement {
|
||||
b := bb[:]
|
||||
var f ringElement
|
||||
for i := 0; i < n; i += 4 {
|
||||
x := uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32
|
||||
@ -642,7 +726,7 @@ func ringDecodeAndDecompress10(b []byte) (ringElement, error) {
|
||||
f[i+2] = fieldElement(decompress(uint16(x>>20&0b11_1111_1111), 10))
|
||||
f[i+3] = fieldElement(decompress(uint16(x>>30&0b11_1111_1111), 10))
|
||||
}
|
||||
return f, nil
|
||||
return f
|
||||
}
|
||||
|
||||
// samplePolyCBD draws a ringElement from the special Dη distribution given a
|
||||
@ -681,11 +765,12 @@ var gammas = [128]fieldElement{17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637,
|
||||
// It implements MultiplyNTTs, according to FIPS 203 (DRAFT), Algorithm 10.
|
||||
func nttMul(f, g nttElement) nttElement {
|
||||
var h nttElement
|
||||
for i := 0; i < 128; i++ {
|
||||
a0, a1 := f[2*i], f[2*i+1]
|
||||
b0, b1 := g[2*i], g[2*i+1]
|
||||
h[2*i] = fieldAdd(fieldMul(a0, b0), fieldMul(fieldMul(a1, b1), gammas[i]))
|
||||
h[2*i+1] = fieldAdd(fieldMul(a0, b1), fieldMul(a1, b0))
|
||||
// We use i += 2 for bounds check elimination. See https://go.dev/issue/66826.
|
||||
for i := 0; i < 256; i += 2 {
|
||||
a0, a1 := f[i], f[i+1]
|
||||
b0, b1 := g[i], g[i+1]
|
||||
h[i] = fieldAddMul(a0, b0, fieldMul(a1, b1), gammas[i/2])
|
||||
h[i+1] = fieldAddMul(a0, b1, a1, b0)
|
||||
}
|
||||
return h
|
||||
}
|
||||
@ -702,18 +787,12 @@ func ntt(f ringElement) nttElement {
|
||||
for start := 0; start < 256; start += 2 * len {
|
||||
zeta := zetas[k]
|
||||
k++
|
||||
for j := start; j < start+len; j += 2 {
|
||||
// Loop 2x unrolled for performance.
|
||||
{
|
||||
t := fieldMul(zeta, f[j+len])
|
||||
f[j+len] = fieldSub(f[j], t)
|
||||
f[j] = fieldAdd(f[j], t)
|
||||
}
|
||||
{
|
||||
t := fieldMul(zeta, f[j+1+len])
|
||||
f[j+1+len] = fieldSub(f[j+1], t)
|
||||
f[j+1] = fieldAdd(f[j+1], t)
|
||||
}
|
||||
// Bounds check elimination hint.
|
||||
f, flen := f[start:start+len], f[start+len:start+len+len]
|
||||
for j := 0; j < len; j++ {
|
||||
t := fieldMul(zeta, flen[j])
|
||||
flen[j] = fieldSub(f[j], t)
|
||||
f[j] = fieldAdd(f[j], t)
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -729,18 +808,12 @@ func inverseNTT(f nttElement) ringElement {
|
||||
for start := 0; start < 256; start += 2 * len {
|
||||
zeta := zetas[k]
|
||||
k--
|
||||
for j := start; j < start+len; j += 2 {
|
||||
// Loop 2x unrolled for performance.
|
||||
{
|
||||
t := f[j]
|
||||
f[j] = fieldAdd(t, f[j+len])
|
||||
f[j+len] = fieldMul(zeta, fieldSub(f[j+len], t))
|
||||
}
|
||||
{
|
||||
t := f[j+1]
|
||||
f[j+1] = fieldAdd(t, f[j+1+len])
|
||||
f[j+1+len] = fieldMul(zeta, fieldSub(f[j+1+len], t))
|
||||
}
|
||||
// Bounds check elimination hint.
|
||||
f, flen := f[start:start+len], f[start+len:start+len+len]
|
||||
for j := 0; j < len; j++ {
|
||||
t := f[j]
|
||||
f[j] = fieldAdd(t, flen[j])
|
||||
flen[j] = fieldMulSub(zeta, flen[j], t)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -9,6 +9,7 @@ import (
|
||||
"crypto/rand"
|
||||
_ "embed"
|
||||
"encoding/hex"
|
||||
"errors"
|
||||
"flag"
|
||||
"math/big"
|
||||
"strconv"
|
||||
@ -17,6 +18,16 @@ import (
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
func TestFieldReduce(t *testing.T) {
|
||||
for a := uint32(0); a < 2*q*q; a++ {
|
||||
got := fieldReduce(a)
|
||||
exp := fieldElement(a % q)
|
||||
if got != exp {
|
||||
t.Fatalf("reduce(%d) = %d, expected %d", a, got, exp)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestFieldAdd(t *testing.T) {
|
||||
for a := fieldElement(0); a < q; a++ {
|
||||
for b := fieldElement(0); b < q; b++ {
|
||||
@ -188,11 +199,11 @@ func TestGammas(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestRoundTrip(t *testing.T) {
|
||||
ek, dk, err := GenerateKey()
|
||||
dk, err := GenerateKey()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
c, Ke, err := Encapsulate(ek)
|
||||
c, Ke, err := Encapsulate(dk.EncapsulationKey())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@ -204,21 +215,21 @@ func TestRoundTrip(t *testing.T) {
|
||||
t.Fail()
|
||||
}
|
||||
|
||||
ek1, dk1, err := GenerateKey()
|
||||
dk1, err := GenerateKey()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if bytes.Equal(ek, ek1) {
|
||||
if bytes.Equal(dk.EncapsulationKey(), dk1.EncapsulationKey()) {
|
||||
t.Fail()
|
||||
}
|
||||
if bytes.Equal(dk, dk1) {
|
||||
if bytes.Equal(dk.Bytes(), dk1.Bytes()) {
|
||||
t.Fail()
|
||||
}
|
||||
if bytes.Equal(dk[len(dk)-32:], dk1[len(dk)-32:]) {
|
||||
if bytes.Equal(dk.Bytes()[EncapsulationKeySize-32:], dk1.Bytes()[EncapsulationKeySize-32:]) {
|
||||
t.Fail()
|
||||
}
|
||||
|
||||
c1, Ke1, err := Encapsulate(ek)
|
||||
c1, Ke1, err := Encapsulate(dk.EncapsulationKey())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@ -231,10 +242,11 @@ func TestRoundTrip(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestBadLengths(t *testing.T) {
|
||||
ek, dk, err := GenerateKey()
|
||||
dk, err := GenerateKey()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
ek := dk.EncapsulationKey()
|
||||
|
||||
for i := 0; i < len(ek)-1; i++ {
|
||||
if _, _, err := Encapsulate(ek[:i]); err == nil {
|
||||
@ -254,15 +266,15 @@ func TestBadLengths(t *testing.T) {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
for i := 0; i < len(dk)-1; i++ {
|
||||
if _, err := Decapsulate(dk[:i], c); err == nil {
|
||||
for i := 0; i < len(dk.Bytes())-1; i++ {
|
||||
if _, err := NewKeyFromExtendedEncoding(dk.Bytes()[:i]); err == nil {
|
||||
t.Errorf("expected error for dk length %d", i)
|
||||
}
|
||||
}
|
||||
dkLong := dk
|
||||
dkLong := dk.Bytes()
|
||||
for i := 0; i < 100; i++ {
|
||||
dkLong = append(dkLong, 0)
|
||||
if _, err := Decapsulate(dkLong, c); err == nil {
|
||||
if _, err := NewKeyFromExtendedEncoding(dkLong); err == nil {
|
||||
t.Errorf("expected error for dk length %d", len(dkLong))
|
||||
}
|
||||
}
|
||||
@ -281,6 +293,29 @@ func TestBadLengths(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func EncapsulateDerand(ek, m []byte) (c, K []byte, err error) {
|
||||
if len(m) != messageSize {
|
||||
return nil, nil, errors.New("bad message length")
|
||||
}
|
||||
return kemEncaps(nil, ek, (*[messageSize]byte)(m))
|
||||
}
|
||||
|
||||
func DecapsulateFromBytes(dkBytes []byte, c []byte) ([]byte, error) {
|
||||
dk, err := NewKeyFromExtendedEncoding(dkBytes)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return Decapsulate(dk, c)
|
||||
}
|
||||
|
||||
func GenerateKeyDerand(t testing.TB, d, z []byte) ([]byte, *DecapsulationKey) {
|
||||
if len(d) != 32 || len(z) != 32 {
|
||||
t.Fatal("bad length")
|
||||
}
|
||||
dk := kemKeyGen(nil, (*[32]byte)(d), (*[32]byte)(z))
|
||||
return dk.EncapsulationKey(), dk
|
||||
}
|
||||
|
||||
var millionFlag = flag.Bool("million", false, "run the million vector test")
|
||||
|
||||
// TestPQCrystalsAccumulated accumulates the 10k vectors generated by the
|
||||
@ -308,19 +343,19 @@ func TestPQCrystalsAccumulated(t *testing.T) {
|
||||
for i := 0; i < n; i++ {
|
||||
s.Read(d)
|
||||
s.Read(z)
|
||||
ek, dk := kemKeyGen(d, z)
|
||||
ek, dk := GenerateKeyDerand(t, d, z)
|
||||
o.Write(ek)
|
||||
o.Write(dk)
|
||||
o.Write(dk.Bytes())
|
||||
|
||||
s.Read(msg)
|
||||
ct, k, err := kemEncaps(ek, msg)
|
||||
ct, k, err := EncapsulateDerand(ek, msg)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
o.Write(ct)
|
||||
o.Write(k)
|
||||
|
||||
kk, err := kemDecaps(dk, ct)
|
||||
kk, err := Decapsulate(dk, ct)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@ -329,7 +364,7 @@ func TestPQCrystalsAccumulated(t *testing.T) {
|
||||
}
|
||||
|
||||
s.Read(ct1)
|
||||
k1, err := kemDecaps(dk, ct1)
|
||||
k1, err := Decapsulate(dk, ct1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@ -342,25 +377,17 @@ func TestPQCrystalsAccumulated(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
var sinkElement fieldElement
|
||||
|
||||
func BenchmarkSampleNTT(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
sinkElement ^= sampleNTT(bytes.Repeat([]byte("A"), 32), '4', '2')[0]
|
||||
}
|
||||
}
|
||||
|
||||
var sink byte
|
||||
|
||||
func BenchmarkKeyGen(b *testing.B) {
|
||||
d := make([]byte, 32)
|
||||
rand.Read(d)
|
||||
z := make([]byte, 32)
|
||||
rand.Read(z)
|
||||
var dk DecapsulationKey
|
||||
var d, z [32]byte
|
||||
rand.Read(d[:])
|
||||
rand.Read(z[:])
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
ek, dk := kemKeyGen(d, z)
|
||||
sink ^= ek[0] ^ dk[0]
|
||||
dk := kemKeyGen(&dk, &d, &z)
|
||||
sink ^= dk.EncapsulationKey()[0]
|
||||
}
|
||||
}
|
||||
|
||||
@ -369,12 +396,13 @@ func BenchmarkEncaps(b *testing.B) {
|
||||
rand.Read(d)
|
||||
z := make([]byte, 32)
|
||||
rand.Read(z)
|
||||
m := make([]byte, 32)
|
||||
rand.Read(m)
|
||||
ek, _ := kemKeyGen(d, z)
|
||||
var m [messageSize]byte
|
||||
rand.Read(m[:])
|
||||
ek, _ := GenerateKeyDerand(b, d, z)
|
||||
var c [CiphertextSize]byte
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
c, K, err := kemEncaps(ek, m)
|
||||
c, K, err := kemEncaps(&c, ek, &m)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
@ -389,41 +417,42 @@ func BenchmarkDecaps(b *testing.B) {
|
||||
rand.Read(z)
|
||||
m := make([]byte, 32)
|
||||
rand.Read(m)
|
||||
ek, dk := kemKeyGen(d, z)
|
||||
c, _, err := kemEncaps(ek, m)
|
||||
ek, dk := GenerateKeyDerand(b, d, z)
|
||||
c, _, err := EncapsulateDerand(ek, m)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
K, err := kemDecaps(dk, c)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
K := kemDecaps(dk, (*[CiphertextSize]byte)(c))
|
||||
sink ^= K[0]
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkRoundTrip(b *testing.B) {
|
||||
ek, dk, err := GenerateKey()
|
||||
dk, err := GenerateKey()
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
ek := dk.EncapsulationKey()
|
||||
c, _, err := Encapsulate(ek)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
b.Run("Alice", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
ekS, dkS, err := GenerateKey()
|
||||
dkS, err := GenerateKey()
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
ekS := dkS.EncapsulationKey()
|
||||
sink ^= ekS[0]
|
||||
|
||||
Ks, err := Decapsulate(dk, c)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
sink ^= ekS[0] ^ dkS[0] ^ Ks[0]
|
||||
sink ^= Ks[0]
|
||||
}
|
||||
})
|
||||
b.Run("Bob", func(b *testing.B) {
|
||||
|
Loading…
Reference in New Issue
Block a user