mirror of
https://github.com/golang/go
synced 2024-11-19 22:04:44 -07:00
strconv: 2x-4x speed improvement for atof64.
benchmark old ns/op new ns/op delta BenchmarkAtof64Decimal 344 71 -79.22% BenchmarkAtof64Float 397 90 -77.15% BenchmarkAtof64FloatExp 445 241 -45.84% BenchmarkAtof64Big 731 324 -55.68% BenchmarkAtof64RandomBits 761 453 -40.47% BenchmarkAtof64RandomFloats 690 314 -54.49% R=dave, rsc CC=golang-dev, remy https://golang.org/cl/5988053
This commit is contained in:
parent
dd963ddf05
commit
cad480440d
@ -37,17 +37,28 @@ func equalIgnoreCase(s1, s2 string) bool {
|
||||
}
|
||||
|
||||
func special(s string) (f float64, ok bool) {
|
||||
switch {
|
||||
case equalIgnoreCase(s, "nan"):
|
||||
return math.NaN(), true
|
||||
case equalIgnoreCase(s, "-inf"),
|
||||
equalIgnoreCase(s, "-infinity"):
|
||||
return math.Inf(-1), true
|
||||
case equalIgnoreCase(s, "+inf"),
|
||||
equalIgnoreCase(s, "+infinity"),
|
||||
equalIgnoreCase(s, "inf"),
|
||||
equalIgnoreCase(s, "infinity"):
|
||||
return math.Inf(1), true
|
||||
if len(s) == 0 {
|
||||
return
|
||||
}
|
||||
switch s[0] {
|
||||
default:
|
||||
return
|
||||
case '+':
|
||||
if equalIgnoreCase(s, "+inf") || equalIgnoreCase(s, "+infinity") {
|
||||
return math.Inf(1), true
|
||||
}
|
||||
case '-':
|
||||
if equalIgnoreCase(s, "-inf") || equalIgnoreCase(s, "-infinity") {
|
||||
return math.Inf(-1), true
|
||||
}
|
||||
case 'n', 'N':
|
||||
if equalIgnoreCase(s, "nan") {
|
||||
return math.NaN(), true
|
||||
}
|
||||
case 'i', 'I':
|
||||
if equalIgnoreCase(s, "inf") || equalIgnoreCase(s, "infinity") {
|
||||
return math.Inf(1), true
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
@ -142,6 +153,105 @@ func (b *decimal) set(s string) (ok bool) {
|
||||
return
|
||||
}
|
||||
|
||||
// readFloat reads a decimal mantissa and exponent from a float
|
||||
// string representation. It sets ok to false if the number could
|
||||
// not fit return types or is invalid.
|
||||
func readFloat(s string) (mantissa uint64, exp int, neg, trunc, ok bool) {
|
||||
const uint64digits = 19
|
||||
i := 0
|
||||
|
||||
// optional sign
|
||||
if i >= len(s) {
|
||||
return
|
||||
}
|
||||
switch {
|
||||
case s[i] == '+':
|
||||
i++
|
||||
case s[i] == '-':
|
||||
neg = true
|
||||
i++
|
||||
}
|
||||
|
||||
// digits
|
||||
sawdot := false
|
||||
sawdigits := false
|
||||
nd := 0
|
||||
ndMant := 0
|
||||
dp := 0
|
||||
for ; i < len(s); i++ {
|
||||
switch c := s[i]; true {
|
||||
case c == '.':
|
||||
if sawdot {
|
||||
return
|
||||
}
|
||||
sawdot = true
|
||||
dp = nd
|
||||
continue
|
||||
|
||||
case '0' <= c && c <= '9':
|
||||
sawdigits = true
|
||||
if c == '0' && nd == 0 { // ignore leading zeros
|
||||
dp--
|
||||
continue
|
||||
}
|
||||
nd++
|
||||
if ndMant < uint64digits {
|
||||
mantissa *= 10
|
||||
mantissa += uint64(c - '0')
|
||||
ndMant++
|
||||
} else if s[i] != '0' {
|
||||
trunc = true
|
||||
}
|
||||
continue
|
||||
}
|
||||
break
|
||||
}
|
||||
if !sawdigits {
|
||||
return
|
||||
}
|
||||
if !sawdot {
|
||||
dp = nd
|
||||
}
|
||||
|
||||
// optional exponent moves decimal point.
|
||||
// if we read a very large, very long number,
|
||||
// just be sure to move the decimal point by
|
||||
// a lot (say, 100000). it doesn't matter if it's
|
||||
// not the exact number.
|
||||
if i < len(s) && (s[i] == 'e' || s[i] == 'E') {
|
||||
i++
|
||||
if i >= len(s) {
|
||||
return
|
||||
}
|
||||
esign := 1
|
||||
if s[i] == '+' {
|
||||
i++
|
||||
} else if s[i] == '-' {
|
||||
i++
|
||||
esign = -1
|
||||
}
|
||||
if i >= len(s) || s[i] < '0' || s[i] > '9' {
|
||||
return
|
||||
}
|
||||
e := 0
|
||||
for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
|
||||
if e < 10000 {
|
||||
e = e*10 + int(s[i]) - '0'
|
||||
}
|
||||
}
|
||||
dp += e * esign
|
||||
}
|
||||
|
||||
if i != len(s) {
|
||||
return
|
||||
}
|
||||
|
||||
exp = dp - ndMant
|
||||
ok = true
|
||||
return
|
||||
|
||||
}
|
||||
|
||||
// decimal power of ten to binary power of two.
|
||||
var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
|
||||
|
||||
@ -243,19 +353,6 @@ out:
|
||||
return bits, overflow
|
||||
}
|
||||
|
||||
// Compute exact floating-point integer from d's digits.
|
||||
// Caller is responsible for avoiding overflow.
|
||||
func (d *decimal) atof64int() float64 {
|
||||
f := 0.0
|
||||
for i := 0; i < d.nd; i++ {
|
||||
f = f*10 + float64(d.d[i]-'0')
|
||||
}
|
||||
if d.neg {
|
||||
f = -f
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
func (d *decimal) atof32int() float32 {
|
||||
f := float32(0)
|
||||
for i := 0; i < d.nd; i++ {
|
||||
@ -267,18 +364,6 @@ func (d *decimal) atof32int() float32 {
|
||||
return f
|
||||
}
|
||||
|
||||
// Reads a uint64 decimal mantissa, which might be truncated.
|
||||
func (d *decimal) atou64() (mant uint64, digits int) {
|
||||
const uint64digits = 19
|
||||
for i, c := range d.d[:d.nd] {
|
||||
if i == uint64digits {
|
||||
return mant, i
|
||||
}
|
||||
mant = 10*mant + uint64(c-'0')
|
||||
}
|
||||
return mant, d.nd
|
||||
}
|
||||
|
||||
// Exact powers of 10.
|
||||
var float64pow10 = []float64{
|
||||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
@ -287,38 +372,41 @@ var float64pow10 = []float64{
|
||||
}
|
||||
var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
|
||||
|
||||
// If possible to convert decimal d to 64-bit float f exactly,
|
||||
// If possible to convert decimal representation to 64-bit float f exactly,
|
||||
// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
|
||||
// Three common cases:
|
||||
// value is exact integer
|
||||
// value is exact integer * exact power of ten
|
||||
// value is exact integer / exact power of ten
|
||||
// These all produce potentially inexact but correctly rounded answers.
|
||||
func (d *decimal) atof64() (f float64, ok bool) {
|
||||
// Exact integers are <= 10^15.
|
||||
// Exact powers of ten are <= 10^22.
|
||||
if d.nd > 15 {
|
||||
func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) {
|
||||
if mantissa>>float64info.mantbits != 0 {
|
||||
return
|
||||
}
|
||||
f = float64(mantissa)
|
||||
if neg {
|
||||
f = -f
|
||||
}
|
||||
switch {
|
||||
case d.dp == d.nd: // int
|
||||
f := d.atof64int()
|
||||
case exp == 0:
|
||||
// an integer.
|
||||
return f, true
|
||||
|
||||
case d.dp > d.nd && d.dp <= 15+22: // int * 10^k
|
||||
f := d.atof64int()
|
||||
k := d.dp - d.nd
|
||||
// Exact integers are <= 10^15.
|
||||
// Exact powers of ten are <= 10^22.
|
||||
case exp > 0 && exp <= 15+22: // int * 10^k
|
||||
// If exponent is big but number of digits is not,
|
||||
// can move a few zeros into the integer part.
|
||||
if k > 22 {
|
||||
f *= float64pow10[k-22]
|
||||
k = 22
|
||||
if exp > 22 {
|
||||
f *= float64pow10[exp-22]
|
||||
exp = 22
|
||||
}
|
||||
return f * float64pow10[k], true
|
||||
|
||||
case d.dp < d.nd && d.nd-d.dp <= 22: // int / 10^k
|
||||
f := d.atof64int()
|
||||
return f / float64pow10[d.nd-d.dp], true
|
||||
if f > 1e15 || f < -1e15 {
|
||||
// the exponent was really too large.
|
||||
return
|
||||
}
|
||||
return f * float64pow10[exp], true
|
||||
case exp < 0 && exp >= -22: // int / 10^k
|
||||
return f / float64pow10[-exp], true
|
||||
}
|
||||
return
|
||||
}
|
||||
@ -383,26 +471,32 @@ func atof64(s string) (f float64, err error) {
|
||||
return val, nil
|
||||
}
|
||||
|
||||
if optimize {
|
||||
// Parse mantissa and exponent.
|
||||
mantissa, exp, neg, trunc, ok := readFloat(s)
|
||||
if ok {
|
||||
// Try pure floating-point arithmetic conversion.
|
||||
if !trunc {
|
||||
if f, ok := atof64exact(mantissa, exp, neg); ok {
|
||||
return f, nil
|
||||
}
|
||||
}
|
||||
// Try another fast path.
|
||||
ext := new(extFloat)
|
||||
if ok := ext.AssignDecimal(mantissa, exp, neg, trunc); ok {
|
||||
b, ovf := ext.floatBits()
|
||||
f = math.Float64frombits(b)
|
||||
if ovf {
|
||||
err = rangeError(fnParseFloat, s)
|
||||
}
|
||||
return f, err
|
||||
}
|
||||
}
|
||||
}
|
||||
var d decimal
|
||||
if !d.set(s) {
|
||||
return 0, syntaxError(fnParseFloat, s)
|
||||
}
|
||||
if optimize {
|
||||
if f, ok := d.atof64(); ok {
|
||||
return f, nil
|
||||
}
|
||||
|
||||
// Try another fast path.
|
||||
ext := new(extFloat)
|
||||
if ok := ext.AssignDecimal(&d); ok {
|
||||
b, ovf := ext.floatBits()
|
||||
f = math.Float64frombits(b)
|
||||
if ovf {
|
||||
err = rangeError(fnParseFloat, s)
|
||||
}
|
||||
return f, err
|
||||
}
|
||||
}
|
||||
b, ovf := d.floatBits(&float64info)
|
||||
f = math.Float64frombits(b)
|
||||
if ovf {
|
||||
|
@ -264,24 +264,21 @@ var uint64pow10 = [...]uint64{
|
||||
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||||
}
|
||||
|
||||
// AssignDecimal sets f to an approximate value of the decimal d. It
|
||||
// AssignDecimal sets f to an approximate value mantissa*10^exp. It
|
||||
// returns true if the value represented by f is guaranteed to be the
|
||||
// best approximation of d after being rounded to a float64.
|
||||
func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
|
||||
func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool) (ok bool) {
|
||||
const uint64digits = 19
|
||||
const errorscale = 8
|
||||
mant10, digits := d.atou64()
|
||||
exp10 := d.dp - digits
|
||||
errors := 0 // An upper bound for error, computed in errorscale*ulp.
|
||||
|
||||
if digits < d.nd {
|
||||
if trunc {
|
||||
// the decimal number was truncated.
|
||||
errors += errorscale / 2
|
||||
}
|
||||
|
||||
f.mant = mant10
|
||||
f.mant = mantissa
|
||||
f.exp = 0
|
||||
f.neg = d.neg
|
||||
f.neg = neg
|
||||
|
||||
// Multiply by powers of ten.
|
||||
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
|
||||
@ -291,9 +288,9 @@ func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
|
||||
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
|
||||
|
||||
// We multiply by exp%step
|
||||
if digits+adjExp <= uint64digits {
|
||||
// We can multiply the mantissa
|
||||
f.mant *= uint64(float64pow10[adjExp])
|
||||
if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
|
||||
// We can multiply the mantissa exactly.
|
||||
f.mant *= uint64pow10[adjExp]
|
||||
f.Normalize()
|
||||
} else {
|
||||
f.Normalize()
|
||||
|
@ -7,11 +7,13 @@ package strconv_test
|
||||
import (
|
||||
"runtime"
|
||||
. "strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
var (
|
||||
globalBuf [64]byte
|
||||
nextToOne = "1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1"
|
||||
|
||||
mallocTest = []struct {
|
||||
count int
|
||||
@ -30,6 +32,14 @@ var (
|
||||
AppendFloat(localBuf[:0], 1.23, 'g', 5, 64)
|
||||
}},
|
||||
{0, `AppendFloat(globalBuf[:0], 1.23, 'g', 5, 64)`, func() { AppendFloat(globalBuf[:0], 1.23, 'g', 5, 64) }},
|
||||
{0, `ParseFloat("123.45", 64)`, func() { ParseFloat("123.45", 64) }},
|
||||
{0, `ParseFloat("123.456789123456789", 64)`, func() { ParseFloat("123.456789123456789", 64) }},
|
||||
{0, `ParseFloat("1.000000000000000111022302462515654042363166809082031251", 64)`, func() {
|
||||
ParseFloat("1.000000000000000111022302462515654042363166809082031251", 64)
|
||||
}},
|
||||
{0, `ParseFloat("1.0000000000000001110223024625156540423631668090820312500...001", 64)`, func() {
|
||||
ParseFloat(nextToOne, 64)
|
||||
}},
|
||||
}
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user