1
0
mirror of https://github.com/golang/go synced 2024-11-24 21:00:09 -07:00

math/big: simplify fast string conversion

- use slice ops for convertWords instead of lo/hi boundaries
- always compute leading zeroes (simplifies logic significantly),
  but remove them once, at the end (since leafSize is small, the
  worst-case scenario is not adding significant overhead)
- various comment cleanups (specifically, replaced direct -> iterative,
  and indirect -> recursive)
- slightly faster overall for -bench=String

(This CL incorporates the changes re: my comments to CL 5418047
https://golang.org/cl/5418047/ )

benchmark                          old ns/op    new ns/op    delta
big.BenchmarkString10Base2               519          527   +1.54%
big.BenchmarkString100Base2             2279         2158   -5.31%
big.BenchmarkString1000Base2           18475        17323   -6.24%
big.BenchmarkString10000Base2         178248       166219   -6.75%
big.BenchmarkString100000Base2       1548494      1431587   -7.55%
big.BenchmarkString10Base8               415          422   +1.69%
big.BenchmarkString100Base8             1025          978   -4.59%
big.BenchmarkString1000Base8            6822         6428   -5.78%
big.BenchmarkString10000Base8          64598        61065   -5.47%
big.BenchmarkString100000Base8        593788       549150   -7.52%
big.BenchmarkString10Base10              654          645   -1.38%
big.BenchmarkString100Base10            1863         1835   -1.50%
big.BenchmarkString1000Base10          12099        11981   -0.98%
big.BenchmarkString10000Base10         57601        56888   -1.24%
big.BenchmarkString100000Base10     20123120     19827890   -1.47%
big.BenchmarkString10Base16              358          362   +1.12%
big.BenchmarkString100Base16             815          776   -4.79%
big.BenchmarkString1000Base16           4710         4421   -6.14%
big.BenchmarkString10000Base16         43938        40968   -6.76%
big.BenchmarkString100000Base16       406307       373930   -7.97%

R=michael.jones, mtj
CC=golang-dev
https://golang.org/cl/5432090
This commit is contained in:
Robert Griesemer 2012-01-09 11:20:09 -08:00
parent 834830d2bb
commit b4be65bc7f

View File

@ -715,13 +715,13 @@ func (x nat) decimalString() string {
// string converts x to a string using digits from a charset; a digit with
// value d is represented by charset[d]. The conversion base is determined
// by len(charset), which must be >= 2.
// by len(charset), which must be >= 2 and <= 256.
func (x nat) string(charset string) string {
b := Word(len(charset))
// special cases
switch {
case b < 2 || MaxBase < b:
case b < 2 || MaxBase > 256:
panic("illegal base")
case len(x) == 0:
return string(charset[0])
@ -773,49 +773,59 @@ func (x nat) string(charset string) string {
w >>= shift
nbits -= shift
}
} else {
// determine "big base" as in 10^19 for 19 decimal digits in a 64 bit Word
bb := Word(1) // big base is b**ndigits
ndigits := 0 // number of base b digits
// determine "big base"; i.e., the largest possible value bb
// that is a power of base b and still fits into a Word
// (as in 10^19 for 19 decimal digits in a 64bit Word)
bb := b // big base is b**ndigits
ndigits := 1 // number of base b digits
for max := Word(_M / b); bb <= max; bb *= b {
ndigits++ // maximize ndigits where bb = b**ndigits, bb <= _M
}
// construct table of successive squares of bb*leafSize to use in subdivisions
// result (table != nil) <=> (len(x) > leafSize > 0)
table := divisors(len(x), b, ndigits, bb)
// preserve x, create local copy for use in divisions
// preserve x, create local copy for use by convertWords
q := nat(nil).set(x)
// convert q to string s in base b with index of MSD indicated by return value
i = q.convertWords(0, i, s, charset, b, ndigits, bb, table)
// convert q to string s in base b
q.convertWords(s, charset, b, ndigits, bb, table)
// strip leading zeros
// (x != 0; thus s must contain at least one non-zero digit
// and the loop will terminate)
i = 0
for zero := charset[0]; s[i] == zero; {
i++
}
}
return string(s[i:])
}
// Convert words of q to base b digits in s directly using iterated nat/Word divison to extract
// low-order Words and indirectly by recursive subdivision and nat/nat division by tabulated
// divisors.
// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
// repeated nat/Word divison.
//
// The direct method processes n Words by n divW() calls, each of which visits every Word in the
// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
// Indirect conversion divides q by its approximate square root, yielding two parts, each half
// the size of q. Using the direct method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s plus
// the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and is
// made better by splitting the subblocks recursively. Best is to split blocks until one more
// Recursive conversion divides q by its approximate square root, yielding two parts, each half
// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
// is made better by splitting the subblocks recursively. Best is to split blocks until one more
// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
// direct approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
// specfic hardware.
//
// lo and hi index character array s. conversion starts with the LSD at hi and moves down toward
// the MSD, which will be at s[0] or s[1]. lo == 0 signals span includes the most significant word.
//
func (q nat) convertWords(lo, hi int, s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) int {
// indirect conversion: split larger blocks to reduce quadratic expense of iterated nat/W division
if leafSize > 0 && len(q) > leafSize && table != nil {
func (q nat) convertWords(s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) {
// split larger blocks recursively
if table != nil {
// len(q) > leafSize > 0
var r nat
index := len(table) - 1
for len(q) > leafSize {
@ -835,72 +845,52 @@ func (q nat) convertWords(lo, hi int, s []byte, charset string, b Word, ndigits
// split q into the two digit number (q'*bbb + r) to form independent subblocks
q, r = q.div(r, q, table[index].bbb)
// convert subblocks and collect results in s[lo:partition] and s[partition:hi]
partition := hi - table[index].ndigits
r.convertWords(partition, hi, s, charset, b, ndigits, bb, table[0:index])
hi = partition // i.e., q.convertWords(lo, partition, s, charset, b, ndigits, bb, table[0:index+1])
// convert subblocks and collect results in s[:h] and s[h:]
h := len(s) - table[index].ndigits
r.convertWords(s[h:], charset, b, ndigits, bb, table[0:index])
s = s[:h] // == q.convertWords(s, charset, b, ndigits, bb, table[0:index+1])
}
} // having split any large blocks now process the remaining small block
}
// direct conversion: process smaller blocks monolithically to avoid overhead of nat/nat division
// having split any large blocks now process the remaining (small) block iteratively
i := len(s)
var r Word
if b == 10 { // hard-coding for 10 here speeds this up by 1.25x (allows mod as mul vs div)
if b == 10 {
// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
for len(q) > 0 {
// extract least significant, base bb "digit"
q, r = q.divW(q, bb)
if lo == 0 && len(q) == 0 {
// skip leading zeros in most-significant group of digits
for j := 0; j < ndigits && r != 0; j++ {
hi--
t := r / 10
s[hi] = charset[r-(t<<3+t<<1)] // 8*t + 2*t = 10*t; r - 10*int(r/10) = r mod 10
r = t
}
} else {
for j := 0; j < ndigits && hi > lo; j++ {
hi--
t := r / 10
s[hi] = charset[r-(t<<3+t<<1)] // 8*t + 2*t = 10*t; r - 10*int(r/10) = r mod 10
r = t
}
for j := 0; j < ndigits && i > 0; j++ {
i--
// avoid % computation since r%10 == r - int(r/10)*10;
// this appears to be faster for BenchmarkString10000Base10
// and smaller strings (but a bit slower for larger ones)
t := r / 10
s[i] = charset[r-t<<3-t-t] // TODO(gri) replace w/ t*10 once compiler produces better code
r = t
}
}
} else {
for len(q) > 0 {
// extract least significant group of digits
// extract least significant, base bb "digit"
q, r = q.divW(q, bb)
if lo == 0 && len(q) == 0 {
// skip leading zeros in most-significant group of digits
for j := 0; j < ndigits && r != 0; j++ {
hi--
s[hi] = charset[r%b]
r = r / b
}
} else {
for j := 0; j < ndigits && hi > lo; j++ {
hi--
s[hi] = charset[r%b]
r = r / b
}
for j := 0; j < ndigits && i > 0; j++ {
i--
s[i] = charset[r%b]
r /= b
}
}
}
// prepend high-order zeroes when q has been normalized to a short number of Words.
// however, do not prepend zeroes when converting the most dignificant digits.
if lo != 0 { // if not MSD
zero := charset[0]
for hi > lo { // while need more leading zeroes
hi--
s[hi] = zero
}
// prepend high-order zeroes
zero := charset[0]
for i > 0 { // while need more leading zeroes
i--
s[i] = zero
}
// return index of most significant output digit in s[] (stored in lowest index)
return hi
}
// Split blocks greater than leafSize Words (or set to 0 to disable indirect conversion)
// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
// Benchmark and configure leafSize using: gotest -test.bench="Leaf"
// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
@ -912,26 +902,30 @@ type divisor struct {
ndigits int // digit length of divisor in terms of output base digits
}
const maxCache = 64 // maximum number of divisors in a single table
var cacheBase10 [maxCache]divisor // cached divisors for base 10
var cacheLock sync.Mutex // defense against concurrent table extensions
var cacheBase10 [64]divisor // cached divisors for base 10
var cacheLock sync.Mutex // protects cacheBase10
// expWW computes x**y
func (z nat) expWW(x, y Word) nat {
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
}
// construct table of powers of bb*leafSize to use in subdivisions
func divisors(m int, b Word, ndigits int, bb Word) []divisor {
// only build table when indirect conversion is enabled and x is large
// only compute table when recursive conversion is enabled and x is large
if leafSize == 0 || m <= leafSize {
return nil
}
// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
k := 1
for words := leafSize; words < m>>1 && k < maxCache; words <<= 1 {
for words := leafSize; words < m>>1 && k < len(cacheBase10); words <<= 1 {
k++
}
// create new table of divisors or extend and reuse existing table as appropriate
var cached bool
var table []divisor
var cached bool
switch b {
case 10:
table = cacheBase10[0:k] // reuse old table for this conversion
@ -946,28 +940,27 @@ func divisors(m int, b Word, ndigits int, bb Word) []divisor {
cacheLock.Lock() // begin critical section
}
var i int
// add new entries as needed
var larger nat
for i < k && table[i].ndigits != 0 { // skip existing entries
i++
}
for ; i < k; i++ { // add new entries
if i == 0 {
table[i].bbb = nat(nil).expWW(bb, Word(leafSize))
table[i].ndigits = ndigits * leafSize
} else {
table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
table[i].ndigits = 2 * table[i-1].ndigits
}
for i := 0; i < k; i++ {
if table[i].ndigits == 0 {
if i == 0 {
table[i].bbb = nat(nil).expWW(bb, Word(leafSize))
table[i].ndigits = ndigits * leafSize
} else {
table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
table[i].ndigits = 2 * table[i-1].ndigits
}
// optimization: exploit aggregated extra bits in macro blocks
larger = nat(nil).set(table[i].bbb)
for mulAddVWW(larger, larger, b, 0) == 0 {
table[i].bbb = table[i].bbb.set(larger)
table[i].ndigits++
}
// optimization: exploit aggregated extra bits in macro blocks
larger = nat(nil).set(table[i].bbb)
for mulAddVWW(larger, larger, b, 0) == 0 {
table[i].bbb = table[i].bbb.set(larger)
table[i].ndigits++
}
table[i].nbits = table[i].bbb.bitLen()
table[i].nbits = table[i].bbb.bitLen()
}
}
if cached {
@ -1295,11 +1288,6 @@ func (z nat) expNN(x, y, m nat) nat {
return z.norm()
}
// calculate x**y for Word arguments y and y
func (z nat) expWW(x, y Word) nat {
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
}
// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.
// If it returns true, n is prime with probability 1 - 1/4^reps.
// If it returns false, n is not prime.