1
0
mirror of https://github.com/golang/go synced 2024-11-18 12:34:42 -07:00

math: faster Cbrt

Old 45.3 ns/op, new 19.9 ns/op.

Change-Id: If2a201981dcc259846631ecbc694c401e0a80287
Reviewed-on: https://go-review.googlesource.com/5260
Reviewed-by: Russ Cox <rsc@golang.org>
This commit is contained in:
Charles Dorian 2015-02-18 20:05:38 -05:00 committed by Minux Ma
parent 6a10f720f2
commit b48d2a5f25

View File

@ -4,13 +4,17 @@
package math package math
/* // The go code is a modified version of the original C code from
The algorithm is based in part on "Optimal Partitioning of // http://www.netlib.org/fdlibm/s_cbrt.c and came with this notice.
Newton's Method for Calculating Roots", by Gunter Meinardus //
and G. D. Taylor, Mathematics of Computation © 1980 American // ====================================================
Mathematical Society. // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
(http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010) //
*/ // Developed at SunSoft, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
// Cbrt returns the cube root of x. // Cbrt returns the cube root of x.
// //
@ -20,57 +24,54 @@ package math
// Cbrt(NaN) = NaN // Cbrt(NaN) = NaN
func Cbrt(x float64) float64 { func Cbrt(x float64) float64 {
const ( const (
A1 = 1.662848358e-01 B1 = 715094163 // (682-0.03306235651)*2**20
A2 = 1.096040958e+00 B2 = 696219795 // (664-0.03306235651)*2**20
A3 = 4.105032829e-01 C = 5.42857142857142815906e-01 // 19/35 = 0x3FE15F15F15F15F1
A4 = 5.649335816e-01 D = -7.05306122448979611050e-01 // -864/1225 = 0xBFE691DE2532C834
B1 = 2.639607233e-01 E = 1.41428571428571436819e+00 // 99/70 = 0x3FF6A0EA0EA0EA0F
B2 = 8.699282849e-01 F = 1.60714285714285720630e+00 // 45/28 = 0x3FF9B6DB6DB6DB6E
B3 = 1.629083358e-01 G = 3.57142857142857150787e-01 // 5/14 = 0x3FD6DB6DB6DB6DB7
B4 = 2.824667908e-01 SmallestNormal = 2.22507385850720138309e-308 // 2**-1022 = 0x0010000000000000
C1 = 4.190115298e-01
C2 = 6.904625373e-01
C3 = 6.46502159e-02
C4 = 1.412333954e-01
) )
// special cases // special cases
switch { switch {
case x == 0 || IsNaN(x) || IsInf(x, 0): case x == 0 || IsNaN(x) || IsInf(x, 0):
return x return x
} }
sign := false sign := false
if x < 0 { if x < 0 {
x = -x x = -x
sign = true sign = true
} }
// Reduce argument and estimate cube root
f, e := Frexp(x) // 0.5 <= f < 1.0
m := e % 3
if m > 0 {
m -= 3
e -= m // e is multiple of 3
}
switch m {
case 0: // 0.5 <= f < 1.0
f = A1*f + A2 - A3/(A4+f)
case -1:
f *= 0.5 // 0.25 <= f < 0.5
f = B1*f + B2 - B3/(B4+f)
default: // m == -2
f *= 0.25 // 0.125 <= f < 0.25
f = C1*f + C2 - C3/(C4+f)
}
y := Ldexp(f, e/3) // e/3 = exponent of cube root
// Iterate // rough cbrt to 5 bits
s := y * y * y t := Float64frombits(Float64bits(x)/3 + B1<<32)
t := s + x if x < SmallestNormal {
y *= (t + x) / (s + t) // subnormal number
// Reiterate t = float64(1 << 54) // set t= 2**54
s = (y*y*y - x) / x t *= x
y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s t = Float64frombits(Float64bits(t)/3 + B2<<32)
if sign {
y = -y
} }
return y
// new cbrt to 23 bits
r := t * t / x
s := C + r*t
t *= G + F/(s+E+D/s)
// chop to 22 bits, make larger than cbrt(x)
t = Float64frombits(Float64bits(t)&(0xFFFFFFFFC<<28) + 1<<30)
// one step newton iteration to 53 bits with error less than 0.667ulps
s = t * t // t*t is exact
r = x / s
w := t + t
r = (r - t) / (w + r) // r-s is exact
t = t + t*r
// restore the sign bit
if sign {
t = -t
}
return t
} }