mirror of
https://github.com/golang/go
synced 2024-11-24 08:20:03 -07:00
cmd/compile: Tinkering with schedule for debug and regalloc
This adds a heap-based proper priority queue to the scheduler which made a relatively easy to test quite a few heuristics that "ought to work well". For go tools themselves (which may not be representative) the heuristic that works best is (1) in line-number-order, then (2) from more to fewer args, then (3) in variable ID order. Trying to improve this with information about use at end of blocks turned out to be fruitless -- all of my naive attempts at using that information turned out worse than ignoring it. I can confirm that the stores-early heuristic tends to help; removing it makes the results slightly worse. My metric is code size reduction, which I take to mean fewer spills from register allocation. It's not uniform. Here's the endpoints for "vet" from one set of pretty-good heuristics (this is representative at least). -2208 time.parse 13472 15680 -14.081633% -1514 runtime.pclntab 1002058 1003572 -0.150861% -352 time.Time.AppendFormat 9952 10304 -3.416149% -112 runtime.runGCProg 1984 2096 -5.343511% -64 regexp/syntax.(*parser).factor 7264 7328 -0.873362% -44 go.string.alldata 238630 238674 -0.018435% 48 math/big.(*Float).round 1376 1328 3.614458% 48 text/tabwriter.(*Writer).writeLines 1232 1184 4.054054% 48 math/big.shr 832 784 6.122449% 88 go.func.* 75174 75086 0.117199% 96 time.Date 1968 1872 5.128205% Overall there appears to be an 0.1% decrease in text size. No timings yet, and given the distribution of size reductions it might make sense to wait on those. addr2line text (code) = -4392 bytes (-0.156273%) api text (code) = -5502 bytes (-0.147644%) asm text (code) = -5254 bytes (-0.187810%) cgo text (code) = -4886 bytes (-0.148846%) compile text (code) = -1577 bytes (-0.019346%) * changed cover text (code) = -5236 bytes (-0.137992%) dist text (code) = -5015 bytes (-0.167829%) doc text (code) = -5180 bytes (-0.182121%) fix text (code) = -5000 bytes (-0.215148%) link text (code) = -5092 bytes (-0.152712%) newlink text (code) = -5204 bytes (-0.196986%) nm text (code) = -4398 bytes (-0.156018%) objdump text (code) = -4582 bytes (-0.155046%) pack text (code) = -4503 bytes (-0.294287%) pprof text (code) = -6314 bytes (-0.085177%) trace text (code) = -5856 bytes (-0.097818%) vet text (code) = -5696 bytes (-0.117334%) yacc text (code) = -4971 bytes (-0.213817%) This leaves me sorely tempted to look into a "real" scheduler to try to do a better job, but I think it might make more sense to look into getting loop information into the register allocator instead. Fixes #14577. Change-Id: I5238b83284ce76dea1eb94084a8cd47277db6827 Reviewed-on: https://go-review.googlesource.com/20240 Run-TryBot: David Chase <drchase@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
This commit is contained in:
parent
481fe59012
commit
b1785a5065
@ -4,6 +4,8 @@
|
||||
|
||||
package ssa
|
||||
|
||||
import "container/heap"
|
||||
|
||||
const (
|
||||
ScorePhi = iota // towards top of block
|
||||
ScoreVarDef
|
||||
@ -11,10 +13,31 @@ const (
|
||||
ScoreDefault
|
||||
ScoreFlags
|
||||
ScoreControl // towards bottom of block
|
||||
|
||||
ScoreCount // not a real score
|
||||
)
|
||||
|
||||
type ValHeap struct {
|
||||
a []*Value
|
||||
less func(a, b *Value) bool
|
||||
}
|
||||
|
||||
func (h ValHeap) Len() int { return len(h.a) }
|
||||
func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
|
||||
|
||||
func (h *ValHeap) Push(x interface{}) {
|
||||
// Push and Pop use pointer receivers because they modify the slice's length,
|
||||
// not just its contents.
|
||||
v := x.(*Value)
|
||||
h.a = append(h.a, v)
|
||||
}
|
||||
func (h *ValHeap) Pop() interface{} {
|
||||
old := h.a
|
||||
n := len(old)
|
||||
x := old[n-1]
|
||||
h.a = old[0 : n-1]
|
||||
return x
|
||||
}
|
||||
func (h ValHeap) Less(i, j int) bool { return h.less(h.a[i], h.a[j]) }
|
||||
|
||||
// Schedule the Values in each Block. After this phase returns, the
|
||||
// order of b.Values matters and is the order in which those values
|
||||
// will appear in the assembly output. For now it generates a
|
||||
@ -23,22 +46,54 @@ const (
|
||||
func schedule(f *Func) {
|
||||
// For each value, the number of times it is used in the block
|
||||
// by values that have not been scheduled yet.
|
||||
uses := make([]int, f.NumValues())
|
||||
uses := make([]int32, f.NumValues())
|
||||
|
||||
// "priority" for a value
|
||||
score := make([]uint8, f.NumValues())
|
||||
score := make([]int8, f.NumValues())
|
||||
|
||||
// scheduling order. We queue values in this list in reverse order.
|
||||
var order []*Value
|
||||
|
||||
// priority queue of legally schedulable (0 unscheduled uses) values
|
||||
var priq [ScoreCount][]*Value
|
||||
|
||||
// maps mem values to the next live memory value
|
||||
nextMem := make([]*Value, f.NumValues())
|
||||
// additional pretend arguments for each Value. Used to enforce load/store ordering.
|
||||
additionalArgs := make([][]*Value, f.NumValues())
|
||||
|
||||
for _, b := range f.Blocks {
|
||||
// Compute score. Larger numbers are scheduled closer to the end of the block.
|
||||
for _, v := range b.Values {
|
||||
switch {
|
||||
case v.Op == OpAMD64LoweredGetClosurePtr:
|
||||
// We also score GetLoweredClosurePtr as early as possible to ensure that the
|
||||
// context register is not stomped. GetLoweredClosurePtr should only appear
|
||||
// in the entry block where there are no phi functions, so there is no
|
||||
// conflict or ambiguity here.
|
||||
if b != f.Entry {
|
||||
f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
|
||||
}
|
||||
score[v.ID] = ScorePhi
|
||||
case v.Op == OpPhi:
|
||||
// We want all the phis first.
|
||||
score[v.ID] = ScorePhi
|
||||
case v.Op == OpVarDef:
|
||||
// We want all the vardefs next.
|
||||
score[v.ID] = ScoreVarDef
|
||||
case v.Type.IsMemory():
|
||||
// Schedule stores as early as possible. This tends to
|
||||
// reduce register pressure. It also helps make sure
|
||||
// VARDEF ops are scheduled before the corresponding LEA.
|
||||
score[v.ID] = ScoreMemory
|
||||
case v.Type.IsFlags():
|
||||
// Schedule flag register generation as late as possible.
|
||||
// This makes sure that we only have one live flags
|
||||
// value at a time.
|
||||
score[v.ID] = ScoreFlags
|
||||
default:
|
||||
score[v.ID] = ScoreDefault
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for _, b := range f.Blocks {
|
||||
// Find store chain for block.
|
||||
// Store chains for different blocks overwrite each other, so
|
||||
@ -77,38 +132,7 @@ func schedule(f *Func) {
|
||||
uses[v.ID]++
|
||||
}
|
||||
}
|
||||
// Compute score. Larger numbers are scheduled closer to the end of the block.
|
||||
for _, v := range b.Values {
|
||||
switch {
|
||||
case v.Op == OpAMD64LoweredGetClosurePtr:
|
||||
// We also score GetLoweredClosurePtr as early as possible to ensure that the
|
||||
// context register is not stomped. GetLoweredClosurePtr should only appear
|
||||
// in the entry block where there are no phi functions, so there is no
|
||||
// conflict or ambiguity here.
|
||||
if b != f.Entry {
|
||||
f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
|
||||
}
|
||||
score[v.ID] = ScorePhi
|
||||
case v.Op == OpPhi:
|
||||
// We want all the phis first.
|
||||
score[v.ID] = ScorePhi
|
||||
case v.Op == OpVarDef:
|
||||
// We want all the vardefs next.
|
||||
score[v.ID] = ScoreVarDef
|
||||
case v.Type.IsMemory():
|
||||
// Schedule stores as early as possible. This tends to
|
||||
// reduce register pressure. It also helps make sure
|
||||
// VARDEF ops are scheduled before the corresponding LEA.
|
||||
score[v.ID] = ScoreMemory
|
||||
case v.Type.IsFlags():
|
||||
// Schedule flag register generation as late as possible.
|
||||
// This makes sure that we only have one live flags
|
||||
// value at a time.
|
||||
score[v.ID] = ScoreFlags
|
||||
default:
|
||||
score[v.ID] = ScoreDefault
|
||||
}
|
||||
}
|
||||
|
||||
if b.Control != nil && b.Control.Op != OpPhi {
|
||||
// Force the control value to be scheduled at the end,
|
||||
// unless it is a phi value (which must be first).
|
||||
@ -130,14 +154,32 @@ func schedule(f *Func) {
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize priority queue with schedulable values.
|
||||
for i := range priq {
|
||||
priq[i] = priq[i][:0]
|
||||
// To put things into a priority queue
|
||||
// The values that should come last are least.
|
||||
priq := &ValHeap{
|
||||
a: make([]*Value, 0, 8), // TODO allocate once and reuse.
|
||||
less: func(x, y *Value) bool {
|
||||
sx := score[x.ID]
|
||||
sy := score[y.ID]
|
||||
if c := sx - sy; c != 0 {
|
||||
return c > 0 // higher score comes later.
|
||||
}
|
||||
if x.Line != y.Line { // Favor in-order line stepping
|
||||
return x.Line > y.Line
|
||||
}
|
||||
if x.Op != OpPhi {
|
||||
if c := len(x.Args) - len(y.Args); c != 0 {
|
||||
return c < 0 // smaller args comes later
|
||||
}
|
||||
}
|
||||
return x.ID > y.ID
|
||||
},
|
||||
}
|
||||
|
||||
// Initialize priority queue with schedulable values.
|
||||
for _, v := range b.Values {
|
||||
if uses[v.ID] == 0 {
|
||||
s := score[v.ID]
|
||||
priq[s] = append(priq[s], v)
|
||||
heap.Push(priq, v)
|
||||
}
|
||||
}
|
||||
|
||||
@ -145,20 +187,14 @@ func schedule(f *Func) {
|
||||
order = order[:0]
|
||||
for {
|
||||
// Find highest priority schedulable value.
|
||||
var v *Value
|
||||
for i := len(priq) - 1; i >= 0; i-- {
|
||||
n := len(priq[i])
|
||||
if n == 0 {
|
||||
continue
|
||||
}
|
||||
v = priq[i][n-1]
|
||||
priq[i] = priq[i][:n-1]
|
||||
break
|
||||
}
|
||||
if v == nil {
|
||||
// Note that schedule is assembled backwards.
|
||||
|
||||
if priq.Len() == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
v := heap.Pop(priq).(*Value)
|
||||
|
||||
// Add it to the schedule.
|
||||
order = append(order, v)
|
||||
|
||||
@ -170,16 +206,14 @@ func schedule(f *Func) {
|
||||
uses[w.ID]--
|
||||
if uses[w.ID] == 0 {
|
||||
// All uses scheduled, w is now schedulable.
|
||||
s := score[w.ID]
|
||||
priq[s] = append(priq[s], w)
|
||||
heap.Push(priq, w)
|
||||
}
|
||||
}
|
||||
for _, w := range additionalArgs[v.ID] {
|
||||
uses[w.ID]--
|
||||
if uses[w.ID] == 0 {
|
||||
// All uses scheduled, w is now schedulable.
|
||||
s := score[w.ID]
|
||||
priq[s] = append(priq[s], w)
|
||||
heap.Push(priq, w)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user