mirror of
https://github.com/golang/go
synced 2024-11-17 16:44:44 -07:00
crypto/elliptic: add asm implementation for p256 on ppc64le
This adds an asm implementation of the p256 functions used in crypto/elliptic, utilizing VMX, VSX to improve performance. On a power9 the improvement is: elliptic benchmarks: name old time/op new time/op delta BaseMult 1.40ms ± 0% 1.44ms ± 0% +2.66% (p=0.029 n=4+4) BaseMultP256 317µs ± 0% 50µs ± 0% -84.14% (p=0.029 n=4+4) ScalarMultP256 854µs ± 2% 214µs ± 0% -74.91% (p=0.029 n=4+4) ecdsa benchmarks: name old time/op new time/op delta SignP256 377µs ± 0% 111µs ± 0% -70.57% (p=0.029 n=4+4) SignP384 6.55ms ± 0% 6.48ms ± 0% -1.03% (p=0.029 n=4+4) VerifyP256 1.19ms ± 0% 0.26ms ± 0% -78.54% (p=0.029 n=4+4) KeyGeneration 319µs ± 0% 52µs ± 0% -83.56% (p=0.029 n=4+4) This implemenation is based on the s390x implementation, using comparable instructions for most with some minor changes where the instructions are not quite the same. Some changes were also needed since s390x is big endian and ppc64le is little endian. This also enables the fuzz_test for ppc64le. Change-Id: I59a69515703b82ad2929f68ba2f11208fa833181 Reviewed-on: https://go-review.googlesource.com/c/go/+/168478 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Michael Munday <mike.munday@ibm.com>
This commit is contained in:
parent
acbed0372e
commit
adef06c7a5
@ -2,7 +2,7 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build amd64 arm64
|
||||
// +build amd64 arm64 ppc64le
|
||||
|
||||
package elliptic
|
||||
|
||||
|
2517
src/crypto/elliptic/p256_asm_ppc64le.s
Normal file
2517
src/crypto/elliptic/p256_asm_ppc64le.s
Normal file
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,7 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !amd64,!s390x,!arm64
|
||||
// +build !amd64,!s390x,!arm64,!ppc64le
|
||||
|
||||
package elliptic
|
||||
|
||||
|
505
src/crypto/elliptic/p256_ppc64le.go
Normal file
505
src/crypto/elliptic/p256_ppc64le.go
Normal file
@ -0,0 +1,505 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ppc64le
|
||||
|
||||
package elliptic
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// This was ported from the s390x implementation for ppc64le.
|
||||
// Some hints are included here for changes that should be
|
||||
// in the big endian ppc64 implementation, however more
|
||||
// investigation and testing is needed for the ppc64 big
|
||||
// endian version to work.
|
||||
type p256CurveFast struct {
|
||||
*CurveParams
|
||||
}
|
||||
|
||||
type p256Point struct {
|
||||
x [32]byte
|
||||
y [32]byte
|
||||
z [32]byte
|
||||
}
|
||||
|
||||
var (
|
||||
p256 Curve
|
||||
p256PreFast *[37][64]p256Point
|
||||
)
|
||||
|
||||
func initP256Arch() {
|
||||
p256 = p256CurveFast{p256Params}
|
||||
initTable()
|
||||
return
|
||||
}
|
||||
|
||||
func (curve p256CurveFast) Params() *CurveParams {
|
||||
return curve.CurveParams
|
||||
}
|
||||
|
||||
// Functions implemented in p256_asm_ppc64le.s
|
||||
// Montgomery multiplication modulo P256
|
||||
//
|
||||
//go:noescape
|
||||
func p256MulAsm(res, in1, in2 []byte)
|
||||
|
||||
// Montgomery square modulo P256
|
||||
//
|
||||
func p256Sqr(res, in []byte) {
|
||||
p256MulAsm(res, in, in)
|
||||
}
|
||||
|
||||
// Montgomery multiplication by 1
|
||||
//
|
||||
//go:noescape
|
||||
func p256FromMont(res, in []byte)
|
||||
|
||||
// iff cond == 1 val <- -val
|
||||
//
|
||||
//go:noescape
|
||||
func p256NegCond(val *p256Point, cond int)
|
||||
|
||||
// if cond == 0 res <- b; else res <- a
|
||||
//
|
||||
//go:noescape
|
||||
func p256MovCond(res, a, b *p256Point, cond int)
|
||||
|
||||
// Constant time table access
|
||||
//
|
||||
//go:noescape
|
||||
func p256Select(point *p256Point, table []p256Point, idx int)
|
||||
|
||||
//
|
||||
//go:noescape
|
||||
func p256SelectBase(point *p256Point, table []p256Point, idx int)
|
||||
|
||||
// Reverse the bytes (endianness)
|
||||
//go:noescape
|
||||
func p256ReverseBytes(res, in []byte)
|
||||
|
||||
// Point add with P2 being affine point
|
||||
// If sign == 1 -> P2 = -P2
|
||||
// If sel == 0 -> P3 = P1
|
||||
// if zero == 0 -> P3 = P2
|
||||
//
|
||||
//go:noescape
|
||||
func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int)
|
||||
|
||||
// Point add
|
||||
//
|
||||
//go:noescape
|
||||
func p256PointAddAsm(res, in1, in2 *p256Point) int
|
||||
|
||||
//
|
||||
//go:noescape
|
||||
func p256PointDoubleAsm(res, in *p256Point)
|
||||
|
||||
// The result should be a slice in LE order, but the slice
|
||||
// from big.Bytes is in BE order.
|
||||
// TODO: For big endian implementation, do not reverse bytes.
|
||||
//
|
||||
func fromBig(big *big.Int) []byte {
|
||||
// This could be done a lot more efficiently...
|
||||
res := big.Bytes()
|
||||
t := make([]byte, 32)
|
||||
if len(res) < 32 {
|
||||
copy(t[32-len(res):], res)
|
||||
} else if len(res) == 32 {
|
||||
copy(t, res)
|
||||
} else {
|
||||
copy(t, res[len(res)-32:])
|
||||
}
|
||||
p256ReverseBytes(t, t)
|
||||
return t
|
||||
}
|
||||
|
||||
// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar
|
||||
// is equal or greater than the order of the group, it's reduced modulo that order.
|
||||
func p256GetMultiplier(in []byte) []byte {
|
||||
n := new(big.Int).SetBytes(in)
|
||||
|
||||
if n.Cmp(p256Params.N) >= 0 {
|
||||
n.Mod(n, p256Params.N)
|
||||
}
|
||||
return fromBig(n)
|
||||
}
|
||||
|
||||
// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the
|
||||
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
|
||||
// R×R mod p. See comment in Inverse about how this is used.
|
||||
// TODO: For big endian implementation, the bytes in these slices should be in reverse order,
|
||||
// as found in the s390x implementation.
|
||||
var rr = []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00}
|
||||
|
||||
// (This is one, in the Montgomery domain.)
|
||||
var one = []byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}
|
||||
|
||||
func maybeReduceModP(in *big.Int) *big.Int {
|
||||
if in.Cmp(p256Params.P) < 0 {
|
||||
return in
|
||||
}
|
||||
return new(big.Int).Mod(in, p256Params.P)
|
||||
}
|
||||
|
||||
func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
|
||||
var r1, r2 p256Point
|
||||
|
||||
scalarReduced := p256GetMultiplier(baseScalar)
|
||||
r1IsInfinity := scalarIsZero(scalarReduced)
|
||||
r1.p256BaseMult(scalarReduced)
|
||||
|
||||
copy(r2.x[:], fromBig(maybeReduceModP(bigX)))
|
||||
copy(r2.y[:], fromBig(maybeReduceModP(bigY)))
|
||||
copy(r2.z[:], one)
|
||||
p256MulAsm(r2.x[:], r2.x[:], rr[:])
|
||||
p256MulAsm(r2.y[:], r2.y[:], rr[:])
|
||||
|
||||
scalarReduced = p256GetMultiplier(scalar)
|
||||
r2IsInfinity := scalarIsZero(scalarReduced)
|
||||
r2.p256ScalarMult(scalarReduced)
|
||||
|
||||
var sum, double p256Point
|
||||
pointsEqual := p256PointAddAsm(&sum, &r1, &r2)
|
||||
p256PointDoubleAsm(&double, &r1)
|
||||
p256MovCond(&sum, &double, &sum, pointsEqual)
|
||||
p256MovCond(&sum, &r1, &sum, r2IsInfinity)
|
||||
p256MovCond(&sum, &r2, &sum, r1IsInfinity)
|
||||
return sum.p256PointToAffine()
|
||||
}
|
||||
|
||||
func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
|
||||
var r p256Point
|
||||
reducedScalar := p256GetMultiplier(scalar)
|
||||
r.p256BaseMult(reducedScalar)
|
||||
return r.p256PointToAffine()
|
||||
}
|
||||
|
||||
func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
|
||||
scalarReduced := p256GetMultiplier(scalar)
|
||||
var r p256Point
|
||||
copy(r.x[:], fromBig(maybeReduceModP(bigX)))
|
||||
copy(r.y[:], fromBig(maybeReduceModP(bigY)))
|
||||
copy(r.z[:], one)
|
||||
p256MulAsm(r.x[:], r.x[:], rr[:])
|
||||
p256MulAsm(r.y[:], r.y[:], rr[:])
|
||||
r.p256ScalarMult(scalarReduced)
|
||||
return r.p256PointToAffine()
|
||||
}
|
||||
|
||||
func scalarIsZero(scalar []byte) int {
|
||||
// If any byte is not zero, return 0.
|
||||
// Check for -0.... since that appears to compare to 0.
|
||||
b := byte(0)
|
||||
for _, s := range scalar {
|
||||
b |= s
|
||||
}
|
||||
return subtle.ConstantTimeByteEq(b, 0)
|
||||
}
|
||||
|
||||
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
|
||||
zInv := make([]byte, 32)
|
||||
zInvSq := make([]byte, 32)
|
||||
|
||||
p256Inverse(zInv, p.z[:])
|
||||
p256Sqr(zInvSq, zInv)
|
||||
p256MulAsm(zInv, zInv, zInvSq)
|
||||
|
||||
p256MulAsm(zInvSq, p.x[:], zInvSq)
|
||||
p256MulAsm(zInv, p.y[:], zInv)
|
||||
|
||||
p256FromMont(zInvSq, zInvSq)
|
||||
p256FromMont(zInv, zInv)
|
||||
|
||||
// SetBytes expects a slice in big endian order,
|
||||
// since ppc64le is little endian, reverse the bytes.
|
||||
// TODO: For big endian, bytes don't need to be reversed.
|
||||
p256ReverseBytes(zInvSq, zInvSq)
|
||||
p256ReverseBytes(zInv, zInv)
|
||||
rx := new(big.Int).SetBytes(zInvSq)
|
||||
ry := new(big.Int).SetBytes(zInv)
|
||||
return rx, ry
|
||||
}
|
||||
|
||||
// p256Inverse sets out to in^-1 mod p.
|
||||
func p256Inverse(out, in []byte) {
|
||||
var stack [6 * 32]byte
|
||||
p2 := stack[32*0 : 32*0+32]
|
||||
p4 := stack[32*1 : 32*1+32]
|
||||
p8 := stack[32*2 : 32*2+32]
|
||||
p16 := stack[32*3 : 32*3+32]
|
||||
p32 := stack[32*4 : 32*4+32]
|
||||
|
||||
p256Sqr(out, in)
|
||||
p256MulAsm(p2, out, in) // 3*p
|
||||
|
||||
p256Sqr(out, p2)
|
||||
p256Sqr(out, out)
|
||||
p256MulAsm(p4, out, p2) // f*p
|
||||
|
||||
p256Sqr(out, p4)
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256MulAsm(p8, out, p4) // ff*p
|
||||
|
||||
p256Sqr(out, p8)
|
||||
|
||||
for i := 0; i < 7; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(p16, out, p8) // ffff*p
|
||||
|
||||
p256Sqr(out, p16)
|
||||
for i := 0; i < 15; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(p32, out, p16) // ffffffff*p
|
||||
|
||||
p256Sqr(out, p32)
|
||||
|
||||
for i := 0; i < 31; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(out, out, in)
|
||||
|
||||
for i := 0; i < 32*4; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(out, out, p32)
|
||||
|
||||
for i := 0; i < 32; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(out, out, p32)
|
||||
|
||||
for i := 0; i < 16; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(out, out, p16)
|
||||
|
||||
for i := 0; i < 8; i++ {
|
||||
p256Sqr(out, out)
|
||||
}
|
||||
p256MulAsm(out, out, p8)
|
||||
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256MulAsm(out, out, p4)
|
||||
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256MulAsm(out, out, p2)
|
||||
|
||||
p256Sqr(out, out)
|
||||
p256Sqr(out, out)
|
||||
p256MulAsm(out, out, in)
|
||||
}
|
||||
|
||||
func boothW5(in uint) (int, int) {
|
||||
var s uint = ^((in >> 5) - 1)
|
||||
var d uint = (1 << 6) - in - 1
|
||||
d = (d & s) | (in & (^s))
|
||||
d = (d >> 1) + (d & 1)
|
||||
return int(d), int(s & 1)
|
||||
}
|
||||
|
||||
func boothW6(in uint) (int, int) {
|
||||
var s uint = ^((in >> 6) - 1)
|
||||
var d uint = (1 << 7) - in - 1
|
||||
d = (d & s) | (in & (^s))
|
||||
d = (d >> 1) + (d & 1)
|
||||
return int(d), int(s & 1)
|
||||
}
|
||||
|
||||
func boothW7(in uint) (int, int) {
|
||||
var s uint = ^((in >> 7) - 1)
|
||||
var d uint = (1 << 8) - in - 1
|
||||
d = (d & s) | (in & (^s))
|
||||
d = (d >> 1) + (d & 1)
|
||||
return int(d), int(s & 1)
|
||||
}
|
||||
|
||||
func initTable() {
|
||||
|
||||
p256PreFast = new([37][64]p256Point)
|
||||
|
||||
// TODO: For big endian, these slices should be in reverse byte order,
|
||||
// as found in the s390x implementation.
|
||||
basePoint := p256Point{
|
||||
x: [32]byte{0x3c, 0x14, 0xa9, 0x18, 0xd4, 0x30, 0xe7, 0x79, 0x01, 0xb6, 0xed, 0x5f, 0xfc, 0x95, 0xba, 0x75,
|
||||
0x10, 0x25, 0x62, 0x77, 0x2b, 0x73, 0xfb, 0x79, 0xc6, 0x55, 0x37, 0xa5, 0x76, 0x5f, 0x90, 0x18}, //(p256.x*2^256)%p
|
||||
y: [32]byte{0x0a, 0x56, 0x95, 0xce, 0x57, 0x53, 0xf2, 0xdd, 0x5c, 0xe4, 0x19, 0xba, 0xe4, 0xb8, 0x4a, 0x8b,
|
||||
0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p
|
||||
z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p
|
||||
|
||||
}
|
||||
|
||||
t1 := new(p256Point)
|
||||
t2 := new(p256Point)
|
||||
*t2 = basePoint
|
||||
|
||||
zInv := make([]byte, 32)
|
||||
zInvSq := make([]byte, 32)
|
||||
for j := 0; j < 64; j++ {
|
||||
*t1 = *t2
|
||||
for i := 0; i < 37; i++ {
|
||||
// The window size is 7 so we need to double 7 times.
|
||||
if i != 0 {
|
||||
for k := 0; k < 7; k++ {
|
||||
p256PointDoubleAsm(t1, t1)
|
||||
}
|
||||
}
|
||||
// Convert the point to affine form. (Its values are
|
||||
// still in Montgomery form however.)
|
||||
p256Inverse(zInv, t1.z[:])
|
||||
p256Sqr(zInvSq, zInv)
|
||||
p256MulAsm(zInv, zInv, zInvSq)
|
||||
|
||||
p256MulAsm(t1.x[:], t1.x[:], zInvSq)
|
||||
p256MulAsm(t1.y[:], t1.y[:], zInv)
|
||||
|
||||
copy(t1.z[:], basePoint.z[:])
|
||||
// Update the table entry
|
||||
copy(p256PreFast[i][j].x[:], t1.x[:])
|
||||
copy(p256PreFast[i][j].y[:], t1.y[:])
|
||||
}
|
||||
if j == 0 {
|
||||
p256PointDoubleAsm(t2, &basePoint)
|
||||
} else {
|
||||
p256PointAddAsm(t2, t2, &basePoint)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (p *p256Point) p256BaseMult(scalar []byte) {
|
||||
// TODO: For big endian, the index should be 31 not 0.
|
||||
wvalue := (uint(scalar[0]) << 1) & 0xff
|
||||
sel, sign := boothW7(uint(wvalue))
|
||||
p256SelectBase(p, p256PreFast[0][:], sel)
|
||||
p256NegCond(p, sign)
|
||||
|
||||
copy(p.z[:], one[:])
|
||||
var t0 p256Point
|
||||
|
||||
copy(t0.z[:], one[:])
|
||||
|
||||
index := uint(6)
|
||||
zero := sel
|
||||
for i := 1; i < 37; i++ {
|
||||
// TODO: For big endian, use the same index values as found
|
||||
// in the s390x implementation.
|
||||
if index < 247 {
|
||||
wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0xff
|
||||
} else {
|
||||
wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0xff
|
||||
}
|
||||
index += 7
|
||||
sel, sign = boothW7(uint(wvalue))
|
||||
p256SelectBase(&t0, p256PreFast[i][:], sel)
|
||||
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
|
||||
zero |= sel
|
||||
}
|
||||
}
|
||||
|
||||
func (p *p256Point) p256ScalarMult(scalar []byte) {
|
||||
// precomp is a table of precomputed points that stores powers of p
|
||||
// from p^1 to p^16.
|
||||
var precomp [16]p256Point
|
||||
var t0, t1, t2, t3 p256Point
|
||||
|
||||
*&precomp[0] = *p
|
||||
p256PointDoubleAsm(&t0, p)
|
||||
p256PointDoubleAsm(&t1, &t0)
|
||||
p256PointDoubleAsm(&t2, &t1)
|
||||
p256PointDoubleAsm(&t3, &t2)
|
||||
*&precomp[1] = t0
|
||||
*&precomp[3] = t1
|
||||
*&precomp[7] = t2
|
||||
*&precomp[15] = t3
|
||||
|
||||
p256PointAddAsm(&t0, &t0, p)
|
||||
p256PointAddAsm(&t1, &t1, p)
|
||||
p256PointAddAsm(&t2, &t2, p)
|
||||
|
||||
*&precomp[2] = t0
|
||||
*&precomp[4] = t1
|
||||
*&precomp[8] = t2
|
||||
|
||||
p256PointDoubleAsm(&t0, &t0)
|
||||
p256PointDoubleAsm(&t1, &t1)
|
||||
*&precomp[5] = t0
|
||||
*&precomp[9] = t1
|
||||
|
||||
p256PointAddAsm(&t2, &t0, p)
|
||||
p256PointAddAsm(&t1, &t1, p)
|
||||
*&precomp[6] = t2
|
||||
*&precomp[10] = t1
|
||||
|
||||
p256PointDoubleAsm(&t0, &t0)
|
||||
p256PointDoubleAsm(&t2, &t2)
|
||||
*&precomp[11] = t0
|
||||
*&precomp[13] = t2
|
||||
|
||||
p256PointAddAsm(&t0, &t0, p)
|
||||
p256PointAddAsm(&t2, &t2, p)
|
||||
*&precomp[12] = t0
|
||||
*&precomp[14] = t2
|
||||
|
||||
// Start scanning the window from top bit
|
||||
index := uint(254)
|
||||
var sel, sign int
|
||||
|
||||
// TODO: For big endian, use index found in s390x implementation.
|
||||
wvalue := (uint(scalar[index/8]) >> (index % 8)) & 0x3f
|
||||
sel, _ = boothW5(uint(wvalue))
|
||||
p256Select(p, precomp[:], sel)
|
||||
zero := sel
|
||||
|
||||
for index > 4 {
|
||||
index -= 5
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
|
||||
// TODO: For big endian, use index values as found in s390x implementation.
|
||||
if index < 247 {
|
||||
wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0x3f
|
||||
} else {
|
||||
wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0x3f
|
||||
}
|
||||
|
||||
sel, sign = boothW5(uint(wvalue))
|
||||
|
||||
p256Select(&t0, precomp[:], sel)
|
||||
p256NegCond(&t0, sign)
|
||||
p256PointAddAsm(&t1, p, &t0)
|
||||
p256MovCond(&t1, &t1, p, sel)
|
||||
p256MovCond(p, &t1, &t0, zero)
|
||||
zero |= sel
|
||||
}
|
||||
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
p256PointDoubleAsm(p, p)
|
||||
|
||||
// TODO: Use index for big endian as found in s390x implementation.
|
||||
wvalue = (uint(scalar[0]) << 1) & 0x3f
|
||||
sel, sign = boothW5(uint(wvalue))
|
||||
|
||||
p256Select(&t0, precomp[:], sel)
|
||||
p256NegCond(&t0, sign)
|
||||
p256PointAddAsm(&t1, p, &t0)
|
||||
p256MovCond(&t1, &t1, p, sel)
|
||||
p256MovCond(p, &t1, &t0, zero)
|
||||
}
|
Loading…
Reference in New Issue
Block a user