mirror of
https://github.com/golang/go
synced 2024-11-22 12:34:48 -07:00
crypto/rsa: handle the case of non-coprime blinds.
We are dealing with the multiplicative group ℤ/pqℤ. Multiples of either p or q are not members of the group since they cannot have an inverse. (Such numbers are 0 in the subgroup ℤ/pℤ.) With p and q of typical size (> 512 bits), the probability of a random blind [1..pq-1] being a multiple of p or q is negligible. However, in the unit tests, much smaller sizes are used and the event could occur. This change checks the result of the ext GCD and deals with this case. It also increases the size of p and q in the unit test as a large number of the keys selected were p, q = 227,169. R=rsc CC=golang-dev https://golang.org/cl/154141
This commit is contained in:
parent
8e5854ae17
commit
ad05d29103
@ -290,18 +290,26 @@ func (DecryptionError) String() string { return "RSA decryption error" }
|
|||||||
|
|
||||||
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
||||||
// order n. It requires that a be a member of the group (i.e. less than n).
|
// order n. It requires that a be a member of the group (i.e. less than n).
|
||||||
func modInverse(a, n *big.Int) (ia *big.Int) {
|
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
||||||
g := new(big.Int);
|
g := new(big.Int);
|
||||||
x := new(big.Int);
|
x := new(big.Int);
|
||||||
y := new(big.Int);
|
y := new(big.Int);
|
||||||
big.GcdInt(g, x, y, a, n);
|
big.GcdInt(g, x, y, a, n);
|
||||||
|
if g.Cmp(bigOne) != 0 {
|
||||||
|
// In this case, a and n aren't coprime and we cannot calculate
|
||||||
|
// the inverse. This happens because the values of n are nearly
|
||||||
|
// prime (being the product of two primes) rather than truly
|
||||||
|
// prime.
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
if x.Cmp(bigOne) < 0 {
|
if x.Cmp(bigOne) < 0 {
|
||||||
// 0 is not the multiplicative inverse of any element so, if x
|
// 0 is not the multiplicative inverse of any element so, if x
|
||||||
// < 1, then x is negative.
|
// < 1, then x is negative.
|
||||||
x.Add(x, n)
|
x.Add(x, n)
|
||||||
}
|
}
|
||||||
|
|
||||||
return x;
|
return x, true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
||||||
@ -320,15 +328,22 @@ func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.E
|
|||||||
// which equals mr mod n. The factor of r can then be removed
|
// which equals mr mod n. The factor of r can then be removed
|
||||||
// by multipling by the multiplicative inverse of r.
|
// by multipling by the multiplicative inverse of r.
|
||||||
|
|
||||||
r, err1 := randomNumber(rand, priv.N);
|
var r *big.Int;
|
||||||
if err1 != nil {
|
|
||||||
err = err1;
|
for {
|
||||||
return;
|
r, err = randomNumber(rand, priv.N);
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
}
|
}
|
||||||
if r.Cmp(bigZero) == 0 {
|
if r.Cmp(bigZero) == 0 {
|
||||||
r = bigOne
|
r = bigOne
|
||||||
}
|
}
|
||||||
ir = modInverse(r, priv.N);
|
var ok bool;
|
||||||
|
ir, ok = modInverse(r, priv.N);
|
||||||
|
if ok {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
bigE := big.NewInt(int64(priv.E));
|
bigE := big.NewInt(int64(priv.E));
|
||||||
rpowe := new(big.Int).Exp(r, bigE, priv.N);
|
rpowe := new(big.Int).Exp(r, bigE, priv.N);
|
||||||
c.Mul(c, rpowe);
|
c.Mul(c, rpowe);
|
||||||
|
@ -18,7 +18,7 @@ func TestKeyGeneration(t *testing.T) {
|
|||||||
t.Errorf("failed to open /dev/urandom")
|
t.Errorf("failed to open /dev/urandom")
|
||||||
}
|
}
|
||||||
|
|
||||||
priv, err := GenerateKey(urandom, 16);
|
priv, err := GenerateKey(urandom, 32);
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Errorf("failed to generate key")
|
t.Errorf("failed to generate key")
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user