mirror of
https://github.com/golang/go
synced 2024-11-18 11:04:42 -07:00
math/big: add modular square-root and Jacobi functions
This change adds Int.ModSqrt to compute modular square-roots via the standard Tonelli-Shanks algorithm, and the Jacobi function that this and many other modular-arithmetic algorithms depend on. This is needed by change 1883 (https://golang.org/cl/1883), to add support for ANSI-standard compressed encoding of elliptic curve points. Change-Id: Icc4805001bba0b3cb7200e0b0a7f87b14a9e9439 Reviewed-on: https://go-review.googlesource.com/1886 Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
parent
1ddb8c20c6
commit
ac61588288
@ -583,6 +583,124 @@ func (z *Int) ModInverse(g, n *Int) *Int {
|
||||
return z
|
||||
}
|
||||
|
||||
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
|
||||
// The y argument must be an odd integer.
|
||||
func Jacobi(x, y *Int) int {
|
||||
if len(y.abs) == 0 || y.abs[0]&1 == 0 {
|
||||
panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
|
||||
}
|
||||
|
||||
// We use the formulation described in chapter 2, section 2.4,
|
||||
// "The Yacas Book of Algorithms":
|
||||
// http://yacas.sourceforge.net/Algo.book.pdf
|
||||
|
||||
var a, b, c Int
|
||||
a.Set(x)
|
||||
b.Set(y)
|
||||
j := 1
|
||||
|
||||
if b.neg {
|
||||
if a.neg {
|
||||
j = -1
|
||||
}
|
||||
b.neg = false
|
||||
}
|
||||
|
||||
for {
|
||||
if b.Cmp(intOne) == 0 {
|
||||
return j
|
||||
}
|
||||
if len(a.abs) == 0 {
|
||||
return 0
|
||||
}
|
||||
a.Mod(&a, &b)
|
||||
if len(a.abs) == 0 {
|
||||
return 0
|
||||
}
|
||||
// a > 0
|
||||
|
||||
// handle factors of 2 in 'a'
|
||||
s := a.abs.trailingZeroBits()
|
||||
if s&1 != 0 {
|
||||
bmod8 := b.abs[0] & 7
|
||||
if bmod8 == 3 || bmod8 == 5 {
|
||||
j = -j
|
||||
}
|
||||
}
|
||||
c.Rsh(&a, s) // a = 2^s*c
|
||||
|
||||
// swap numerator and denominator
|
||||
if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
|
||||
j = -j
|
||||
}
|
||||
a.Set(&b)
|
||||
b.Set(&c)
|
||||
}
|
||||
}
|
||||
|
||||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
|
||||
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
|
||||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
|
||||
// not an odd integer.
|
||||
func (z *Int) ModSqrt(x, p *Int) *Int {
|
||||
switch Jacobi(x, p) {
|
||||
case -1:
|
||||
return nil // x is not a square mod p
|
||||
case 0:
|
||||
return z.SetInt64(0) // sqrt(0) mod p = 0
|
||||
case 1:
|
||||
break
|
||||
}
|
||||
if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
|
||||
x = new(Int).Mod(x, p)
|
||||
}
|
||||
|
||||
// Break p-1 into s*2^e such that s is odd.
|
||||
var s Int
|
||||
s.Sub(p, intOne)
|
||||
e := s.abs.trailingZeroBits()
|
||||
s.Rsh(&s, e)
|
||||
|
||||
// find some non-square n
|
||||
var n Int
|
||||
n.SetInt64(2)
|
||||
for Jacobi(&n, p) != -1 {
|
||||
n.Add(&n, intOne)
|
||||
}
|
||||
|
||||
// Core of the Tonelli-Shanks algorithm. Follows the description in
|
||||
// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
|
||||
// Brown:
|
||||
// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
||||
var y, b, g, t Int
|
||||
y.Add(&s, intOne)
|
||||
y.Rsh(&y, 1)
|
||||
y.Exp(x, &y, p) // y = x^((s+1)/2)
|
||||
b.Exp(x, &s, p) // b = x^s
|
||||
g.Exp(&n, &s, p) // g = n^s
|
||||
r := e
|
||||
for {
|
||||
// find the least m such that ord_p(b) = 2^m
|
||||
var m uint
|
||||
t.Set(&b)
|
||||
for t.Cmp(intOne) != 0 {
|
||||
t.Mul(&t, &t).Mod(&t, p)
|
||||
m++
|
||||
}
|
||||
|
||||
if m == 0 {
|
||||
return z.Set(&y)
|
||||
}
|
||||
|
||||
t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
|
||||
// t = g^(2^(r-m-1)) mod p
|
||||
g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
|
||||
y.Mul(&y, &t).Mod(&y, p)
|
||||
b.Mul(&b, &g).Mod(&b, p)
|
||||
r = m
|
||||
}
|
||||
}
|
||||
|
||||
// Lsh sets z = x << n and returns z.
|
||||
func (z *Int) Lsh(x *Int, n uint) *Int {
|
||||
z.abs = z.abs.shl(x.abs, n)
|
||||
|
@ -704,6 +704,13 @@ var primes = []string{
|
||||
"230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
|
||||
"5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
|
||||
"203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
|
||||
|
||||
// ECC primes: http://tools.ietf.org/html/draft-ladd-safecurves-02
|
||||
"3618502788666131106986593281521497120414687020801267626233049500247285301239", // Curve1174: 2^251-9
|
||||
"57896044618658097711785492504343953926634992332820282019728792003956564819949", // Curve25519: 2^255-19
|
||||
"9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576599", // E-382: 2^382-105
|
||||
"42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472367", // Curve41417: 2^414-17
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", // E-521: 2^521-1
|
||||
}
|
||||
|
||||
var composites = []string{
|
||||
@ -1249,6 +1256,136 @@ func TestModInverse(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
// testModSqrt is a helper for TestModSqrt,
|
||||
// which checks that ModSqrt can compute a square-root of elt^2.
|
||||
func testModSqrt(t *testing.T, elt, mod, sq, sqrt *Int) bool {
|
||||
var sqChk, sqrtChk, sqrtsq Int
|
||||
sq.Mul(elt, elt)
|
||||
sq.Mod(sq, mod)
|
||||
z := sqrt.ModSqrt(sq, mod)
|
||||
if z != sqrt {
|
||||
t.Errorf("ModSqrt returned wrong value %s", z)
|
||||
}
|
||||
|
||||
// test ModSqrt arguments outside the range [0,mod)
|
||||
sqChk.Add(sq, mod)
|
||||
z = sqrtChk.ModSqrt(&sqChk, mod)
|
||||
if z != &sqrtChk || z.Cmp(sqrt) != 0 {
|
||||
t.Errorf("ModSqrt returned inconsistent value %s", z)
|
||||
}
|
||||
sqChk.Sub(sq, mod)
|
||||
z = sqrtChk.ModSqrt(&sqChk, mod)
|
||||
if z != &sqrtChk || z.Cmp(sqrt) != 0 {
|
||||
t.Errorf("ModSqrt returned inconsistent value %s", z)
|
||||
}
|
||||
|
||||
// make sure we actually got a square root
|
||||
if sqrt.Cmp(elt) == 0 {
|
||||
return true // we found the "desired" square root
|
||||
}
|
||||
sqrtsq.Mul(sqrt, sqrt) // make sure we found the "other" one
|
||||
sqrtsq.Mod(&sqrtsq, mod)
|
||||
return sq.Cmp(&sqrtsq) == 0
|
||||
}
|
||||
|
||||
func TestModSqrt(t *testing.T) {
|
||||
var elt, mod, modx4, sq, sqrt Int
|
||||
r := rand.New(rand.NewSource(9))
|
||||
for i, s := range primes[1:] { // skip 2, use only odd primes
|
||||
mod.SetString(s, 10)
|
||||
modx4.Lsh(&mod, 2)
|
||||
|
||||
// test a few random elements per prime
|
||||
for x := 1; x < 5; x++ {
|
||||
elt.Rand(r, &modx4)
|
||||
elt.Sub(&elt, &mod) // test range [-mod, 3*mod)
|
||||
if !testModSqrt(t, &elt, &mod, &sq, &sqrt) {
|
||||
t.Errorf("#%d: failed (sqrt(e) = %s)", i, &sqrt)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// exhaustive test for small values
|
||||
for n := 3; n < 100; n++ {
|
||||
mod.SetInt64(int64(n))
|
||||
if !mod.ProbablyPrime(10) {
|
||||
continue
|
||||
}
|
||||
isSquare := make([]bool, n)
|
||||
|
||||
// test all the squares
|
||||
for x := 1; x < n; x++ {
|
||||
elt.SetInt64(int64(x))
|
||||
if !testModSqrt(t, &elt, &mod, &sq, &sqrt) {
|
||||
t.Errorf("#%d: failed (sqrt(%d,%d) = %s)", x, &elt, &mod, &sqrt)
|
||||
}
|
||||
isSquare[sq.Uint64()] = true
|
||||
}
|
||||
|
||||
// test all non-squares
|
||||
for x := 1; x < n; x++ {
|
||||
sq.SetInt64(int64(x))
|
||||
z := sqrt.ModSqrt(&sq, &mod)
|
||||
if !isSquare[x] && z != nil {
|
||||
t.Errorf("#%d: failed (sqrt(%d,%d) = nil)", x, &sqrt, &mod)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestJacobi(t *testing.T) {
|
||||
testCases := []struct {
|
||||
x, y int64
|
||||
result int
|
||||
}{
|
||||
{0, 1, 1},
|
||||
{0, -1, 1},
|
||||
{1, 1, 1},
|
||||
{1, -1, 1},
|
||||
{0, 5, 0},
|
||||
{1, 5, 1},
|
||||
{2, 5, -1},
|
||||
{-2, 5, -1},
|
||||
{2, -5, -1},
|
||||
{-2, -5, 1},
|
||||
{3, 5, -1},
|
||||
{5, 5, 0},
|
||||
{-5, 5, 0},
|
||||
{6, 5, 1},
|
||||
{6, -5, 1},
|
||||
{-6, 5, 1},
|
||||
{-6, -5, -1},
|
||||
}
|
||||
|
||||
var x, y Int
|
||||
|
||||
for i, test := range testCases {
|
||||
x.SetInt64(test.x)
|
||||
y.SetInt64(test.y)
|
||||
expected := test.result
|
||||
actual := Jacobi(&x, &y)
|
||||
if actual != expected {
|
||||
t.Errorf("#%d: Jacobi(%d, %d) = %d, but expected %d", i, test.x, test.y, actual, expected)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestJacobiPanic(t *testing.T) {
|
||||
const failureMsg = "test failure"
|
||||
defer func() {
|
||||
msg := recover()
|
||||
if msg == nil || msg == failureMsg {
|
||||
panic(msg)
|
||||
}
|
||||
t.Log(msg)
|
||||
}()
|
||||
x := NewInt(1)
|
||||
y := NewInt(2)
|
||||
// Jacobi should panic when the second argument is even.
|
||||
Jacobi(x, y)
|
||||
panic(failureMsg)
|
||||
}
|
||||
|
||||
var encodingTests = []string{
|
||||
"-539345864568634858364538753846587364875430589374589",
|
||||
"-678645873",
|
||||
|
Loading…
Reference in New Issue
Block a user