mirror of
https://github.com/golang/go
synced 2024-11-11 19:51:37 -07:00
cmd/compile: in prove, complete support for OpIsInBounds/OpIsSliceInBounds
The logic in addBranchRestrictions didn't allow to correctly model OpIs(Slice)Bound for signed domain, and it was also partly implemented within addRestrictions. Thanks to the previous changes, it is now possible to handle the negative conditions correctly, so that we can learn both signed/LT + unsigned/LT on the positive side, and signed/GE + unsigned/GE on the negative side (but only if the index can be proved to be non-negative). This is able to prove ~50 more slice accesses in std+cmd. Change-Id: I9858080dc03b16f85993a55983dbc4b00f8491b0 Reviewed-on: https://go-review.googlesource.com/104037 Run-TryBot: Giovanni Bajo <rasky@develer.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com>
This commit is contained in:
parent
b846edfd59
commit
ac43de3ae5
@ -491,11 +491,11 @@ var (
|
||||
OpGreater64: {signed, gt},
|
||||
OpGreater64U: {unsigned, gt},
|
||||
|
||||
// TODO: OpIsInBounds actually test 0 <= a < b. This means
|
||||
// that the positive branch learns signed/LT and unsigned/LT
|
||||
// but the negative branch only learns unsigned/GE.
|
||||
OpIsInBounds: {unsigned, lt}, // 0 <= arg0 < arg1
|
||||
OpIsSliceInBounds: {unsigned, lt | eq}, // 0 <= arg0 <= arg1
|
||||
// For these ops, the negative branch is different: we can only
|
||||
// prove signed/GE (signed/GT) if we can prove that arg0 is non-negative.
|
||||
// See the special case in addBranchRestrictions.
|
||||
OpIsInBounds: {signed | unsigned, lt}, // 0 <= arg0 < arg1
|
||||
OpIsSliceInBounds: {signed | unsigned, lt | eq}, // 0 <= arg0 <= arg1
|
||||
}
|
||||
)
|
||||
|
||||
@ -664,11 +664,31 @@ func addBranchRestrictions(ft *factsTable, b *Block, br branch) {
|
||||
if tr, has := domainRelationTable[b.Control.Op]; has {
|
||||
// When we branched from parent we learned a new set of
|
||||
// restrictions. Update the factsTable accordingly.
|
||||
d := tr.d
|
||||
switch br {
|
||||
case negative:
|
||||
addRestrictions(b, ft, tr.d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
|
||||
switch b.Control.Op { // Special cases
|
||||
case OpIsInBounds, OpIsSliceInBounds:
|
||||
// 0 <= a0 < a1 (or 0 <= a0 <= a1)
|
||||
//
|
||||
// On the positive branch, we learn a0 < a1,
|
||||
// both signed and unsigned.
|
||||
//
|
||||
// On the negative branch, we learn (0 > a0 ||
|
||||
// a0 >= a1). In the unsigned domain, this is
|
||||
// simply a0 >= a1 (which is the reverse of the
|
||||
// positive branch, so nothing surprising).
|
||||
// But in the signed domain, we can't express the ||
|
||||
// condition, so check if a0 is non-negative instead,
|
||||
// to be able to learn something.
|
||||
d = unsigned
|
||||
if ft.isNonNegative(c.Args[0]) {
|
||||
d |= signed
|
||||
}
|
||||
}
|
||||
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
|
||||
case positive:
|
||||
addRestrictions(b, ft, tr.d, c.Args[0], c.Args[1], tr.r)
|
||||
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -687,31 +707,6 @@ func addRestrictions(parent *Block, ft *factsTable, t domain, v, w *Value, r rel
|
||||
}
|
||||
ft.update(parent, v, w, i, r)
|
||||
|
||||
if i == boolean && v == nil && w != nil && (w.Op == OpIsInBounds || w.Op == OpIsSliceInBounds) {
|
||||
// 0 <= a0 < a1 (or 0 <= a0 <= a1)
|
||||
//
|
||||
// domainRelationTable handles the a0 / a1
|
||||
// relation, but not the 0 / a0 relation.
|
||||
//
|
||||
// On the positive branch we learn 0 <= a0,
|
||||
// but this turns out never to be useful.
|
||||
//
|
||||
// On the negative branch we learn (0 > a0 ||
|
||||
// a0 >= a1) (or (0 > a0 || a0 > a1)). We
|
||||
// can't express an || condition, but we learn
|
||||
// something if we can disprove the LHS.
|
||||
if r == eq && ft.isNonNegative(w.Args[0]) {
|
||||
// false == w, so we're on the
|
||||
// negative branch. a0 >= 0, so the
|
||||
// LHS is false. Thus, the RHS holds.
|
||||
opr := eq | gt
|
||||
if w.Op == OpIsSliceInBounds {
|
||||
opr = gt
|
||||
}
|
||||
ft.update(parent, w.Args[0], w.Args[1], signed, opr)
|
||||
}
|
||||
}
|
||||
|
||||
// Additional facts we know given the relationship between len and cap.
|
||||
if i != signed && i != unsigned {
|
||||
continue
|
||||
|
@ -475,6 +475,21 @@ func f17(b []int) {
|
||||
}
|
||||
}
|
||||
|
||||
func f18(b []int, x int, y uint) {
|
||||
_ = b[x]
|
||||
_ = b[y]
|
||||
|
||||
if x > len(b) { // ERROR "Disproved Greater64$"
|
||||
return
|
||||
}
|
||||
if y > uint(len(b)) { // ERROR "Disproved Greater64U$"
|
||||
return
|
||||
}
|
||||
if int(y) > len(b) { // ERROR "Disproved Greater64$"
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
func sm1(b []int, x int) {
|
||||
// Test constant argument to slicemask.
|
||||
useSlice(b[2:8]) // ERROR "Proved slicemask not needed$"
|
||||
|
Loading…
Reference in New Issue
Block a user