1
0
mirror of https://github.com/golang/go synced 2024-11-11 19:51:37 -07:00

cmd/compile: in prove, complete support for OpIsInBounds/OpIsSliceInBounds

The logic in addBranchRestrictions didn't allow to correctly
model OpIs(Slice)Bound for signed domain, and it was also partly
implemented within addRestrictions.

Thanks to the previous changes, it is now possible to handle
the negative conditions correctly, so that we can learn
both signed/LT + unsigned/LT on the positive side, and
signed/GE + unsigned/GE on the negative side (but only if
the index can be proved to be non-negative).

This is able to prove ~50 more slice accesses in std+cmd.

Change-Id: I9858080dc03b16f85993a55983dbc4b00f8491b0
Reviewed-on: https://go-review.googlesource.com/104037
Run-TryBot: Giovanni Bajo <rasky@develer.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This commit is contained in:
Giovanni Bajo 2018-04-03 18:58:01 +02:00
parent b846edfd59
commit ac43de3ae5
2 changed files with 42 additions and 32 deletions

View File

@ -491,11 +491,11 @@ var (
OpGreater64: {signed, gt},
OpGreater64U: {unsigned, gt},
// TODO: OpIsInBounds actually test 0 <= a < b. This means
// that the positive branch learns signed/LT and unsigned/LT
// but the negative branch only learns unsigned/GE.
OpIsInBounds: {unsigned, lt}, // 0 <= arg0 < arg1
OpIsSliceInBounds: {unsigned, lt | eq}, // 0 <= arg0 <= arg1
// For these ops, the negative branch is different: we can only
// prove signed/GE (signed/GT) if we can prove that arg0 is non-negative.
// See the special case in addBranchRestrictions.
OpIsInBounds: {signed | unsigned, lt}, // 0 <= arg0 < arg1
OpIsSliceInBounds: {signed | unsigned, lt | eq}, // 0 <= arg0 <= arg1
}
)
@ -664,11 +664,31 @@ func addBranchRestrictions(ft *factsTable, b *Block, br branch) {
if tr, has := domainRelationTable[b.Control.Op]; has {
// When we branched from parent we learned a new set of
// restrictions. Update the factsTable accordingly.
d := tr.d
switch br {
case negative:
addRestrictions(b, ft, tr.d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
switch b.Control.Op { // Special cases
case OpIsInBounds, OpIsSliceInBounds:
// 0 <= a0 < a1 (or 0 <= a0 <= a1)
//
// On the positive branch, we learn a0 < a1,
// both signed and unsigned.
//
// On the negative branch, we learn (0 > a0 ||
// a0 >= a1). In the unsigned domain, this is
// simply a0 >= a1 (which is the reverse of the
// positive branch, so nothing surprising).
// But in the signed domain, we can't express the ||
// condition, so check if a0 is non-negative instead,
// to be able to learn something.
d = unsigned
if ft.isNonNegative(c.Args[0]) {
d |= signed
}
}
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
case positive:
addRestrictions(b, ft, tr.d, c.Args[0], c.Args[1], tr.r)
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
}
}
}
@ -687,31 +707,6 @@ func addRestrictions(parent *Block, ft *factsTable, t domain, v, w *Value, r rel
}
ft.update(parent, v, w, i, r)
if i == boolean && v == nil && w != nil && (w.Op == OpIsInBounds || w.Op == OpIsSliceInBounds) {
// 0 <= a0 < a1 (or 0 <= a0 <= a1)
//
// domainRelationTable handles the a0 / a1
// relation, but not the 0 / a0 relation.
//
// On the positive branch we learn 0 <= a0,
// but this turns out never to be useful.
//
// On the negative branch we learn (0 > a0 ||
// a0 >= a1) (or (0 > a0 || a0 > a1)). We
// can't express an || condition, but we learn
// something if we can disprove the LHS.
if r == eq && ft.isNonNegative(w.Args[0]) {
// false == w, so we're on the
// negative branch. a0 >= 0, so the
// LHS is false. Thus, the RHS holds.
opr := eq | gt
if w.Op == OpIsSliceInBounds {
opr = gt
}
ft.update(parent, w.Args[0], w.Args[1], signed, opr)
}
}
// Additional facts we know given the relationship between len and cap.
if i != signed && i != unsigned {
continue

View File

@ -475,6 +475,21 @@ func f17(b []int) {
}
}
func f18(b []int, x int, y uint) {
_ = b[x]
_ = b[y]
if x > len(b) { // ERROR "Disproved Greater64$"
return
}
if y > uint(len(b)) { // ERROR "Disproved Greater64U$"
return
}
if int(y) > len(b) { // ERROR "Disproved Greater64$"
return
}
}
func sm1(b []int, x int) {
// Test constant argument to slicemask.
useSlice(b[2:8]) // ERROR "Proved slicemask not needed$"